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Streszczenie

Głównym celem pracy jest teoretyczna analiza pewnego modelu dyfuzji, która jest
nielokalna w przestrzeni. W tym celu zaprezentujemy teorię półgrup analitycznych dla
operatora danego w postaci dywergencji z pochodnej Caputo. Następnie, wykorzystamy
te rezultaty do rozwiązania jednofazowego, jednowymiarowego ułamkowego w przestrzeni
zagadnienia Stefana. Znajdziemy również specjalne rozwiązanie tego problemu metodą
rozwiązań samopodobnych. Ostatnia część pracy jest poświęcona ułamkowemu w czasie
jednofazowemu, jednowymiarowemu zagadnieniu Stefana. Wyprowadzimy model, za-
kładając, że strumień dyfuzji dany jest w postaci ułamkowej względem czasu pochodnej
Riemanna-Liouville z gradientu gęstości transportowanej substancji. Znajdziemy też
specjalne rozwiązanie tego problemu.

Słowa kluczowe: teoria półgrup analitycznych, ułamkowe zagadnienia Stefana,
rozwiązania samopodobne
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Abstract

This work mainly concentrates on providing the mathematical background for a specific
model of fractional in space diffusion. We will develop the theory of analytic semigroups
for an operator given by divergence of fractional Caputo derivative. Subsequently, we
will apply these results to obtain a solution to one-phase, one-dimensional fractional in
space Stefan problem. We will also find a special solution to this problem by similarity
variable method. The final part of thesis is devoted to fractional in time one-phase,
one-dimensional Stefan model. We derive a model assuming that the diffusive flux is given
by the time-fractional Riemann-Liouville derivative of gradient of transported substance.
Then, we will obtain a special solution to this problem.

Key words: analytic semigroup theory, fractional Stefan problems, self-similar solutions
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CHAPTER 1. MOTIVATION

Chapter 1

Motivation

In this work we study problems exhibiting non-local in space or non-local in time effects.
The non-Fickian diffusion has been already observed in complex, heterogeneous media. An
overview of recently derived models may be found in [5]. A model phenomenon considered
in [5] is a mass transport in fractured porous aquifer. In such complex domain we expect
different behaviour of fluid in fractures and different in pores. Hence, we may regard each
of phases (fluid in porous blocks and fluid in network of fractures) as a continuum that
occupies the entire domain. Moreover, we take into account the mass exchange between
this two continua. This idea, called double-continua approach, was proposed in [3] and it
leads to a model that has a non-local character. We refer to [5, chapter 1.2.3] for a detailed
derivation of this model. Let us discuss the case when the length scales of heterogeneity
of medium are assumed to be power-low distributed. Such situation is quite extensively
discussed in recent literature. We refer to [5, chapter 1.2.5] and references therein, for the
case of fractured porous medium. The main idea of modelling diffusion processes in such
media is to assume that the diffusive flux is proportional to the fractional derivative of
transported quantity.
In this work, we mainly focus on an anomalous super-diffusion model, where the diffusive
flux is given by the fractional Caputo derivative with respect to space variable. Such
an idea was introduced by V. Voller in [31], where the author considered the model of
infiltration of water into heterogeneous soils. Subsequently, the author transferred the idea
of representing the diffusive operator as a divergence of Caputo derivative, to the one-phase
Stefan problem (see [32]). One of the goals of this paper is to investigate the mathematical
properties of this operator from the operator theory perspective. The results concerning
this issue are presented in Chapter 3. In this chapter we solve the super-diffusion problem
with various kinds of boundary conditions by means of an analytic semigroup theory.
We note that most of the results of the first section of Chapter 3 come from [27]. We
emphasise that we develop the theory of analytic semigroups in L2 - framework. In the
final section of this chapter we present the approach to solve the super-diffusion problem
in the case where data do not belong to L2. This method provides us weak solutions by
means of energy estimates.
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In Chapter 4 we present an application of the results of previous chapter. We solve the
one-phase, one-dimensional, space-fractional Stefan model introduced in [32]. In the proof
we apply the theory of evolution operators based on the results obtained in the first section
of Chapter 3. Subsequently, we increase the regularity of obtained solution in the interior
of the domain. In the second section of Chapter 4, we derive space-fractional versions of
maximum principles and Hopf lemma. Finally, we apply the Schauder fixed point theorem,
to obtain the solution to Stefan problem. We note that the results of Chapter 4, described
above, come from [28]. We finish this chapter with an example of an exact solution to
space-fractional Stefan problem by means of similarity variable method.
In the final part of the thesis we concentrate on anomalous sub-diffusion model with
temporal non-locality. Here, we are motivated by [33], where the authors represent
the non-locality in time, assuming that the diffusive flux is given in the form of the
time-fractional Riemann-Liouville derivative of temperature gradient. In a final part of
introductory Chapter 2, we present a careful derivation of one-phase, one-dimensional
Stefan problem based on such assumption on the flux. The existence of special, self-similar
solution to this problem will be proven in Chapter 5. Furthermore, we will show a uniform
convergence of self-similar solutions to the time-fractional Stefan problem to a self-similar
solution to the classical Stefan problem as a fractional parameter α tends to one. The
results concerning sub-diffusion effects come from [14].
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Chapter 2

Introduction

The introductory chapter is divided into the two parts. The first section summarizes
without proofs the relevant material from mathematical analysis, the theory of operators
as well as the theory of semigroups and evolution operators. In the subsequent sections we
turn our attention to fractional calculus. The sections second and third are devoted to the
preliminary results concerning fractional operators, considered in this work. We introduce
their notions and we give a brief exposition of their properties. We finish this chapter with
derivation of two fractional Stefan models which will be considered in subsequent chapters.

2.1. Preliminaries

2.1.1. Function spaces

The absolutely continuous functions play an essential role in the theory of fractional
calculus. Here, we recall their definition and characterization.

Definition 2.1. [16, Definition 3.1] If P ⊆ R, then we say that f : P → R is absolutely
continuous on P (f ∈ AC(P )) if and only if for every ε > 0 there exists δ > 0 such that

n∑
k=1
|f(bk)− f(ak)| < ε

for every finite number of non overlapping intervals (ak, bk), k ∈ 1, . . . , n with [ak, bk] ⊆ P

and
n∑
k=1
|bk − ak| < δ.

We write f ∈ ACloc(P ), if f ∈ AC([a, b]) for every [a, b] ⊆ P .

Theorem 2.1. [16, Theorem 3.30] Let P ⊂ R be an interval. A function f : P → R
belongs to ACloc(P ) if and only if

(i) f is continuous in P ,
(ii) f is differentiable a.e. in P and f ′ belongs to L1

loc(P ),
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(iii) for all x, y ∈ P

f(y) = f(x) +
∫ y

x
f ′(t)dt. (2.1)

We note that from the above theorem follows that the space ACloc(R) may be identified
with W 1,1

loc (R).
Let us now introduce the definition of a fractional Sobolev space. The definition will
be given by means of complex interpolation. For an introduction to real and complex
interpolation we refer to [20].

Definition 2.2. [17, section 9.1] Let L > 0, β > 0. We choose a natural number m greater
than or equal to β. Then, we define a fractional Sobolev space as a complex interpolation
space

Hβ(0, L) := [L2(0, L), Hm(0, L)] β
m
.

This definition is independent of the choice of number m up to the norm equivalence.

Remark 2.1. [30, Remark 4.4.2/2] The space Hβ(0, L) coincides with the space of
functions belonging to L2(0, L) such that for s = β − bβc

∑
j≤bβc

∫ L

0

∫ L

0

∣∣∣f (j)(x)− f (j)(y)
∣∣∣2

|x− y|1+2s dydx <∞.

The equivalent norm in Hβ(0, L) is given by

‖f‖Hβ(0,L) =

‖f‖2
L2(0,L) +

∑
j≤bβc

∫ L

0

∫ L

0

∣∣∣f (j)(x)− f (j)(y)
∣∣∣2

|x− y|1+2s dydx


1
2

.

We will frequently make use of the following remark from [17]. Here we consider only
the one dimensional case.

Remark 2.2. [17, Remark 12.8.] For L > 0, s ≥ 0, s 6= 1
2 there holds

∂

∂x
∈ B(Hs(0, L);Hs−1(0, L)).

2.1.2. Fractional powers of operators

Here, we present a brief introduction to the theory of fractional powers of operators. We
limit ourselves only to the most essential results that will be used in the thesis. Although
there are a few standard approaches to this topic, here we follow the one introduced in [21].
It will provide us a uniformity of notation. For a comprehensive study of the fractional
powers of operators we refer to [2], [19], [21] [23], [30], [34].
In the whole subsection we discuss only linear operators A : D(A) ⊆ X → X where X is
a Banach space. Here and henceforth by E we denote the identity operator.
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2.1. PRELIMINARIES

Definition 2.3. [21, Definition 1.1.1] We say that A is non-negative if (−∞, 0) ⊆ ρ(A)
and there exists M > 0 such that∥∥∥(λE + A)−1

∥∥∥
B(X)

≤ M

λ
for every λ > 0.

Definition 2.4. [21, Definition 1.1.2] If A is non-negative and additionally 0 ∈ ρ(A) we
say that A is positive.

We note that if A is injective but it is not invertible, by A−1 we understand the
operator with the domain D(A−1) = R(A) defined as follows: for every x ∈ D(A−1) we
set A−1x = y, where Ay = x.

Proposition 2.2. [21, Proposition 1.1.2] If A is non-negative and injective, then A−1 is
also non-negative.

Let us pass to the definition of Balakrishnan operator.

Definition 2.5. [21, Definition 3.1.1] Let A be a non-negative operator. We define for
0 < Reα < 1 operator Jα as follows D(Jα) = D(A)

Jαu = sinαπ
π

∫ ∞
0

λα−1(λ+ A)−1Audλ.

For n < Reα < n+ 1, we set D(Jα) = D(An+1) and Jα = Jα−nAn.
If Reα = 1, D(Jα) = D(A2) and

Jαu = sinαπ
π

∫ ∞
0

λα−1[(λ+ A)−1 − λ

λ2 − 1]Audλ+ sin απ2 Au.

For Reα = n+ 1, we set D(Jα) = D(An+2) and Jα = Jα−nAn.

Proposition 2.3. [21, Theorem 3.1.5 and Theorem 3.1.6] Let A be a non-negative operator.
If u ∈ D(An) then α 7→ Jαu is analytic in {α ∈ C : 0 < Reα < n} with values in X. Let
A be densely defined. Then for u ∈ D(A) we have

1. limα→1 J
αu = Au, where the convergence is in a fixed region contained in {α ∈ C : 0 <

Reα < 1},
2. limα→0 J

αu = u, where the convergence is in a fixed region contained in {α ∈ C : 0 <
Reα < 1}.

The definition of a positive power (i.e. Reα > 0) for non-negative and bounded
operator is given by the Balakrishnan operator.

Definition 2.6. [21, Definition 5.1.1] If A is non-negative and bounded we define Aα = Jα

for Reα > 0.

Definition 2.7. [21, Definition 5.1.2] Let A be an unbounded and positive operator. We
define for Reα > 0

Aα = ((A−1)α)−1.

Here, the domain of Aα consists of u ∈ X such that u ∈ R((A−1)α).

17
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We also present the definition of Aα in the case where A is unbounded and not invertible.
However, we do not concentrate on this topic, because in this work we will discuss the
operators which are either bounded or invertible.

Definition 2.8. [21, Definition 5.1.3] If A is non-negative, unbounded and 0 ∈ σ(A),
for Reα > 0 and for u ∈ X such that u ∈ D((A + ε)α) for ε > 0 close to zero and
limε→0+(A+ ε)αu exists in X, we define

Aαu := lim
ε→0+

(A+ ε)αu.

In the next proposition we present an interpolation estimate between the norms of
fractional powers of non-negative operator.

Proposition 2.4. [34, Remark 2.9, Chapter 2.7.4] Let 0 ≤ α < β < γ ≤ 1. We assume
that A is a non-negative operator in the sense of Definition 2.3. Then for any u ∈ D(Aγ)
we have ∥∥∥Aβu∥∥∥ ≤ 4

π
(M + 1) ‖Aγu‖

β−α
γ−α ‖Aαu‖

γ−β
γ−α ,

where the constant M comes from Definition 2.3.

Proposition 2.5. [21, Theorem 3.1.8 and Corollary 5.1.12] Let Reα > 0 and A be an
non-negative operator. Then, Jα is closable and Aα = Jα if and only if A is densely
defined.

Corollary 2.6. [21, Corollary 5.2.4] If A is non-negative and injective, then for Reα > 0
Aα is also injective and (A−1)α = (Aα)−1.

Now we introduce negative and imaginary powers.

Definition 2.9. [21, Definition 7.1.1 and Definition 7.1.2] Let A be non-negative and
injective. Then for Reα > 0 we set A−α := (Aα)−1. Moreover,

Aiτ := (A+ λ)2A−1A1+iτ (A+ λ)−2 for λ > 0.

If A is invertible, then in the definition of Aiτ , we may take λ = 0.

We finish this subsection with two theorems. We note that the second one is of
fundamental importance, if we consider the domains of fractional powers of operators.

Theorem 2.7. [21, Theorem 7.1.1] Let α, β ∈ C and let A be a non-negative and injective
operator. If u ∈ D(Aα+β) ∩D(Aβ), then Aβu ∈ D(Aα) and AαAβu = Aα+βu.

Theorem 2.8. [21, Theorem 11.6.1] Let us assume that A is densely defined, non-negative
operator on a Banach space X. If A has bounded imaginary powers, i.e. A is injective
and there exist M > 0, θ ≥ 0 such that∥∥∥Ait∥∥∥

B(X)
≤Meθ|t| for every t ∈ R,

then D(Aα) = [X,D(A)]α for α ∈ (0, 1) with norm equivalence.
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2.1. PRELIMINARIES

2.1.3. Semigroup theory

The third chapter of the thesis is devoted to an analysis of the operator of space-fractional
diffusion from the perspective of semigroup theory. Here, we present a brief introduction
to this subject. Let us recall the definitions of C0 - semigroup of contractions and the
infinitesimal generator of the semigroup.

Definition 2.10. [23, Chapter 1] Let X be a Banach space. Let T (t), 0 ≤ t < ∞ be a
one parameter family such that T (t) ∈ B(X) for every t ∈ [0,∞). Then T (t) is called a
C0 - semigroup of contractions iff

1. T (0) = E,
2. T (t+ s) = T (t)T (s) for every t, s ∈ [0,∞),
3. limt→0+ T (t)u = u for every u ∈ X,
4. ‖T (t)‖B(X) ≤ 1.

We note that if the family T (t) satisfies only the first two assumptions it is called a
semigroup and if it satisfies additionally 3., then it is called a C0 - semigroup.

Definition 2.11. [23, Chapter 1] Let X be a Banach space and let T (t) be a semigroup
on X. The linear operator A defined by

D(A) = {u ∈ X : lim
t→0+

T (t)u− u
t

exists in X}

and
Au : D(A)→ X, Au = lim

t→0+

T (t)u− u
t

is called the infinitesimal generator of semigroup T (t).

Remark 2.3. [23, Chapter 1, Theorem 2.4] One of fundamental properties of the C0

- semigroups is that if T (t) is a C0 - semigroup and A denotes its generator, then if
u ∈ D(A), then T (t)u ∈ D(A) and

d

dt
T (t)u = AT (t)u = T (t)Au.

Let us recall the definition of dissipative operator.

Definition 2.12. [2, Definition 3.4.1] A linear operator A : D(A) ⊆ X → X is called
dissipative if for every u ∈ D(A) there exists u∗ ∈ X∗ such that ‖u∗‖ ≤ 1, 〈u, u∗〉 = ‖u‖
and Re〈Au, u∗〉 ≤ 0.

We present also a characterization of dissipative operator.

Remark 2.4. [2, Lemma 3.4.2, Example 3.4.3]

1. An operator A on a Banach space X is dissipative if and only if for every u ∈ D(A)
and every t > 0 the holds ‖u− tAu‖ ≥ ‖u‖.

19
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2. From the first part of the remark it follows easily that if X is a Hilbert space, A is
dissipative if and only if for every u ∈ D(A) the holds Re(Au, u) ≤ 0.

Let us present the Lumer-Philips theorem which provides the criterion for an operator
to be a generator of C0-semigroup of contractions.

Theorem 2.9. [2, Theorem 3.4.5] Let X be a Banach space and A be a linear, densely
defined operator on X. Then A is a generator of C0-semigroup of contractions if and
only if

1. A is dissipative,
2. there exists λ > 0 such that R(λE − A) = X.

We introduce a definition of numerical range and a classical result from [23].

Proposition 2.10. [23, Ch.1, Theorem 3.9.] Let X be a Banach space. For a linear
operator A in X we define its numerical range S(A) as

S(A) = {〈x∗, Ax〉 : x ∈ D(A), ‖x‖ = 1, x∗ ∈ X∗, ‖x∗‖ = 1, 〈x∗, x〉 = 1}.

Let us assume that A is closed, linear and densely defined on X. We denote by Σ := C\S(A).
If λ ∈ Σ, then λE − A is injective and has closed range. Moreover, if Σ0 ⊆ Σ is such that
Σ0 ∩ ρ(A) 6= ∅, then the spectrum of A is contained in C \ Σ0 and∥∥∥(λE − A)−1

∥∥∥ ≤ 1
d(λ, S(A))

for every λ ∈ Σ0,

where d(λ, S(A)) denotes a distance between λ and S(A).

Now, we will recall the definition of an analytic semigroup. At first, we introduce the
definition of a sectorial operator given by [19].

Definition 2.13. [19, Definition 2.0.1] Let A be a linear operator on a Banach space X.
We say that A is sectorial if there exists M > 0 and ω ∈ (π2 , π] such that

1. ρ(A) ⊇ Sω := {λ ∈ C : λ 6= 0, |arg λ| < ω},
2. ‖(λE − A)−1‖ ≤ M

|λ| for every λ ∈ Sω.

The definition of an analytic semigroup is given as follows.

Definition 2.14. [19, Definition 2.0.1] Let A : D(A) ⊂ X → X be a sectorial operator
and let ω be the constant from Definition 2.13. The family T (t) defined by T (0) = E and

T (t) = 1
2πi

∫
Γr,η

etλ(λE − A)−1dλ for t > 0,

where r > 0, η ∈ (π2 , ω) and

Γr,η := {λ ∈ C : |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg λ| ≤ η, |λ| = r}

is the curve oriented counterclockwise, is called an analytic semigroup generated by A.
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If a sectorial operator A is densely defined then an analytic semigroup generated by A
is in particular a C0 semigroup.

In fact, the semigroup generated by a densely defined sectorial operator has better
regularity properties then a C0 - semigroup, i.e. it increases the regularity of initial
condition. We present here selected properties of analytic semigroups. The following
results comes from [34, Theorem 3.4 Chapter 3.2.1] and [19, Proposition 2.1.1].

Theorem 2.11. Let A be a sectorial operator on a Banach space X and u0 ∈ X. Then,
there exists exactly one solution to

d

dt
U(t) = AU(t), U(0) = u0

belonging to C([0, T ];X) ∩ C((0, T ];D(A)) ∩ C1((0, T ];X). The solution is given by
U(t) = T (t)u0, where T (t) denotes an analytic semigroup generated by A. Furthermore,
there exists a positive constant c = c(T ), which is an increasing function of T , such that
the following estimate holds for every t ∈ (0, T ]

‖U(t)‖X + t ‖U ′(t)‖X + t ‖AU(t)‖X ≤ c ‖u0‖ .

Nevertheless, for every u ∈ X and every k ∈ N there holds T (t)u ∈ D(Ak) for t > 0 and
if u ∈ D(Ak), then AkT (t)u = T (t)Aku for every t ≥ 0. Besides, T (t)u ∈ C∞((0,∞);X)
and

dk

dtk
T (t) = AkT (t).

One may also consider a nonhomogeneous problem. Here we present a simplified
version of [34, Theorem 3.4 Chapter 3.2.1]. We note that in our formulation, the regularity
of the source term is not optimal. For optimal regularity results we refer to [34] and [19].

Theorem 2.12. Let A be a sectorial operator on a Banach space X, u0 ∈ X and
F ∈ C0,ν([0, T ];X) for ν ∈ (0, 1). Then, there exists exactly one solution to

d

dt
U(t) = AU(t) + F (t), U(0) = u0 (2.2)

in C([0, T ];X)∩C((0, T ];D(A))∩C1((0, T ];X) which is given by the variation of constant
formula

U(t) = T (t)u0 +
∫ t

0
T (t− τ)F (τ)dτ,

where T (t) denotes an analytic semigroup generated by A.

We will also make use of the version of the estimate in complex interpolation spaces.
We present here, scaled version of [19, Proposition 2.2.9.]. We note that the original result
from [19] is more general.

Proposition 2.13. [19, Proposition 2.2.9.] (scaled version) Let T (t) be an analytic
semigroup generated by sectorial operator A. Then, for every t ∈ (0, T ), n ∈ N, α, β ∈ [0, 1]
there holds

‖AnT (t)u‖[X,D(A)]β ≤ ctα−β−n ‖u‖[X,D(A)]α ,
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where c is a positive constant dependent on α, β, n and T . Moreover, c is an increasing
function of T .

We finish this subsection with a useful result concerning the perturbation of the
generator of an analytic semigroup.

Proposition 2.14. [19, Proposition 2.4.1] Let X be a Banach space and A : D(A) ⊆
X → X be sectorial. Let us consider B ∈ B(Y,X), where Y is a Banach space such that
D(A) ⊆ Y ⊆ X. We equip D(A) with the graph norm, i.e. ‖u‖D(A) = ‖u‖X + ‖Au‖X . If
there exists α ∈ (0, 1) and c > 0 such that

‖u‖Y ≤ c ‖u‖αD(A) ‖u‖
1−α
X for every u ∈ D(A).

Then, A+B : D(A)→ X is sectorial.

2.1.4. Evolution operators

Now we will present a brief introduction to the theory of non-autonomous equations.
By means of this theory we solve the space-fractional Stefan problem in Chapter 4. Let as
begin with the definition of evolution operator.

Definition 2.15. [19, Definition 6.0.1] Let X be a Banach space, T > 0. A family of
linear bounded operators {G(t, σ) : 0 ≤ σ ≤ t ≤ T} is said to be an evolution operator for
the problem

u′(t) = A(t)u+ f(t), 0 < t ≤ T, u(0) = u0,

where A(·) denotes a family of sectorial operators with common domains, i.e. D(A(t)) ≡ D

for every t ∈ [0, T ], if

1. G(t, σ)G(σ, r) = G(t, r), G(σ, σ) = E, for 0 ≤ r ≤ σ ≤ t ≤ T ,
2. G(t, σ) ∈ B(X,D) for 0 ≤ σ ≤ t ≤ T ,
3. t 7→ G(t, σ) is differentiable in (σ, T ) with values in B(X) and

∂

∂t
G(t, σ) = A(t)G(t, σ) for 0 ≤ σ < t ≤ T.

Theorem 2.15. [19, Chapter 6] Let D be a Banach space continuously embedded into X
and let T > 0, a ∈ (0, 1). If for 0 ≤ t ≤ T A(t) : D(A(t))→ X satisfies

1. for every t ∈ [0, T ] A(t) is sectorial and D(A(t)) ≡ D,
2. t 7→ A(t) ∈ C0,a([0, T ];B(D,X)),

then there exists a family of evolution operators for A(t) given by Definition 2.15.

If the initial data are more regular, we expect higher-regularity results up to the initial
time.
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Proposition 2.16. [19, Corollary 6.1.6.(i), (iii)] Let A(t) satisfies the assumptions of
Theorem 2.15. If u0 ∈ X, then G(t, 0)u0 ∈ C([0, T ];X) ∩ C1((0, T ];X) ∩ C((0, T ];D).
Furthermore, if u0 ∈ D, then G(t, 0)u0 ∈ C1([0, T ];X) ∩ C([0, T ];D) and

∂

∂t
G(t, 0)u0 = A(t)G(t, 0)u0 for every 0 ≤ t ≤ T.

In order to develop the theory of non-homogenous problems we introduce the notion of
a mild solution.

Definition 2.16. Let us discuss the problem

u′(t) = A(t)u(t) + f(t), σ < t ≤ T, u(σ) = uσ, (2.3)

where A(t) satisfies the assumptions of Theorem 2.15. We denote by {G(t, τ) : σ ≤ τ ≤
t ≤ T} the family of evolution operators generated by A(t). For every f ∈ L1(σ, T ;X),
uσ ∈ X function u defined by the formula

u(t) = G(t, σ)uσ +
∫ t

σ
G(t, τ)f(τ)dτ (2.4)

is called a mild solution to (2.3).

The next proposition establishes when the solution to (2.3) is given by (2.4).

Proposition 2.17. [19, Corollary 6.2.4.] Let f ∈ C((σ, T ];X) ∩ L1(σ, T ;X), uσ ∈ D. If
problem (2.3) has a solution belonging to C1((0, T ];X) ∩ C((0, T ];D) ∩ C([0, T ];X) so
that (2.3) is satisfied for each t ∈ (0, T ], then u is given by (2.4).

We finish this section with a proposition that collects the estimates which are used in
the proof of Theorem 4.1.

Proposition 2.18. [19, Corollary 6.1.8] Let {G(t, σ) : 0 ≤ σ ≤ t ≤ T} be a family of
evolution operators generated by A(t) : D → X. Then for every θ, δ ∈ (0, 1), G satisfies
the following estimates. If g ∈ [X,D]δ, then for any 0 ≤ σ < t ≤ T there exists positive
constant c = c(θ, δ, T ) which is a continuous increasing function of T such that

‖G(t, σ)g‖D ≤
c

(t− σ)1−δ ‖g‖[X,D]δ . (2.5)

Moreover, for any 0 ≤ δ < θ < 1, we have

‖G(t, σ)g‖[X,D]θ ≤
c

(t− σ)θ−δ ‖g‖[X,D]δ (2.6)

and for θ ∈ (0, 1), δ ∈ (0, 1]

‖A(t)G(t, σ)g‖[X,D]θ ≤
c

(t− σ)1+θ−δ ‖g‖[X,D]δ . (2.7)

Finally, for every 0 ≤ σ < r < t ≤ T

‖A(t)G(t, σ)g − A(r)G(r, σ)g‖X ≤ c

(
(t− r)a

(r − σ)1−δ + 1
(r − σ)1−δ −

1
(t− σ)1−δ

)
‖g‖[X,D]δ ,

(2.8)
where a ∈ (0, 1) comes from Theorem 2.15.
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2.2. Fractional integrals and derivatives and their connection
with fractional powers of operators

According to [29], the origins of fractional derivatives are dated to XVII century and
the origins of calculus itself. Nevertheless, this subject became extensively studied just in
the last decades. In this section we introduce the definitions of fractional operators and
we briefly establish their connection with fractional powers of operators of integration and
differentiation.

Definition 2.17. Let L > 0, α ∈ C, Reα > 0. For f ∈ L1(0, L) we introduce the
fractional integral Iα by the formula

Iαf(x) = 1
Γ(α)

∫ x

0
(x− p)α−1f(p)dp. (2.9)

Here Γ(·) denotes the Gamma function which is given by the formula

Γ(z) =
∫ ∞

0
e−ttz−1dt.

Here and in the whole thesis by ∗ we denote the convolution on (0,∞), i.e.

(f ∗ g)(x) =
∫ x

0
f(p)g(x− p)dp.

We note that the fractional integral is given by convolution on positive real line with
integrable kernel, i. e. Iαf = xα−1

Γ(α) ∗ f . Hence, by the Young inequality for convolution it
is well defined for integrable functions and Iα ∈ B(Lp(0, L), Lp(0, L)) for every p ∈ [1,∞].
Directly from the formula we may notice that (I1f)(x) =

∫ x
0 f(p)dp. To show that Inf is

equal to n− fold integral it is enough to apply the integration by parts formula.
Using the phrase ’fractional integral’, it seems natural to ask, whether the operator defined
by (2.9) may be interpreted as a fractional power of the operator of integration. We will
give an affirmative answer to this question, in the case of Lp space for p ∈ [1,∞]. It is
also worth to mention the paper [9], were the case of L2 - space was considered. Let us
define the operator of integration on Lp(0, L) by

(If)(x) =
∫ x

0
f(p)dp for f ∈ Lp(0, L), p ∈ [1,∞]. (2.10)

We will show that the operator I is non-negative in the sense of Definition 2.3. The
non-negativity of I in Lp(0, L) for p ∈ [1,∞] follows from the two propositions presented
below.

Proposition 2.19. [12] Let L > 0 and λ ∈ C, λ 6= 0. If u, v ∈ L1(0, L), then

(λE + I)v(t) = u(t) ⇐⇒ v(t) = λ−1u(t)− λ−2
∫ t

0
u(s)e

s−t
λ ds. (2.11)

Proof. Let us assume that v(t) = λ−1u(t)−λ−2 ∫ t
0 u(s)e s−tλ ds. Applying the Fubini theorem

we arrive at

(λE + I)v(t) = u(t)− λ−1
∫ t

0
u(s)e s−tλ ds+ λ−1

∫ t

0
u(s)ds− λ−2

∫ t

0

∫ τ

0
u(s)e s−τλ dsdτ

24



2.2. FRACTIONAL INTEGRALS AND DERIVATIVES AND THEIR CONNECTION WITH
FRACTIONAL POWERS OF OPERATORS

= u(t)− λ−1
∫ t

0
u(s)(e s−tλ − 1)ds− λ−2

∫ t

0

∫ t

s
e
s−τ
λ dτu(s)ds = u(t).

To obtain the reverse implication we convolve both sides of (λE + I)v(t) = u(t) with e− t
λ

and we get
λ
∫ t

0
v(s)e

s−t
λ ds+

∫ t

0

∫ τ

0
v(s)dse

τ−t
λ dτ =

∫ t

0
u(s)e

s−t
λ ds.

If we apply the Fubini theorem, then the above equality reduces to

λ
∫ t

0
v(s)ds =

∫ t

0
u(s)e

s−t
λ ds.

Taking the derivative of both sides we arrive at the desired equality.

Proposition 2.20. [12] If L > 0, p ∈ [1,∞], λ 6= 0, then I + λE : Lp(0, L) −→ Lp(0, L)
is an isomorphism and there holds the following estimate

‖(λE + I)−1‖B(Lp(0,L)) ≤ (1 +
√

2)|λ|−1 for λ ∈ Σ, (2.12)

where
Σ = {z ∈ C : Re z > | Im z|}.

Proof. Clearly, λE + I ∈ B(Lp(0, L)), i.e. it is linear and bounded. We will show that the
equivalence (2.11) defines a bounded inverse.

‖(λE + I)−1u‖Lp(0,L) = ‖λ−1u(t)− λ−2
∫ t

0
u(s)e s−tλ ds‖Lp(0,L)

≤ |λ|−1‖u‖Lp(0,L) + |λ|−2‖u‖Lp(0,L)‖e−
t
λ‖L1(0,L),

where we applied the Young inequality for convolution. Calculating the last norm we get

‖(λE + I)−1u‖Lp(0,L) ≤ |λ|−1
[
1 + |λ|

Reλ

(
1− e−L

Reλ
|λ|2
)]
‖u‖Lp(0,L).

Applying the estimate
|λ|

Reλ

(
1− eL

Reλ
|λ|2
)
≤
√

2 for λ ∈ Σ,

we obtain (2.12).

Propositions 2.19 and 2.20 show that I is non-negative operator in the sense of
Definition 2.3. From Definition 2.6 we infer that positive powers of I are defined by
Balakrishnan operator Jα given by Definition 2.5. Let us discuss here the case 0 < Reα < 1.
Then,

Jαu = sinαπ
π

∫ ∞
0

λα−1(λE + I)−1Iudλ.

By Proposition 2.19 we note that

(λE + I)−1Iu(t) = λ−1
∫ t

0
u(τ)dτ − λ−2

∫ t

0

∫ s

0
u(τ)dτe

s−t
λ ds = λ−1

∫ t

0
u(τ)e

τ−t
λ dτ.

Hence,
Jαu = sinαπ

π

∫ ∞
0

λα−2
∫ t

0
u(τ)e

τ−t
λ dτdλ.

Applying the Fubini theorem and then the substitution t−τ
λ

= p we arrive at

Jαu = sinαπ
π

∫ t

0
u(τ)(t− τ)α−1

∫ ∞
0

p−αe−pdpdτ = sinαπ
π

∫ t

0
u(τ)(t− τ)α−1dτΓ(1− α).
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Recalling that
sin πα
π

= 1
Γ(1− α)Γ(α) , (2.13)

we obtain

Jαu = 1
Γ(α)

∫ t

0
u(τ)(t− τ)α−1dτ.

Proceeding similarly in the general case Reα > 0 we arrive at the following proposition.

Proposition 2.21. Let Reα,L > 0, p ∈ [1,∞]. Then the operator Iα defined in (2.9) as
an operator acting on Lp(0, L) coincides with the fractional power of integration operator
defined by (2.10).

As a matter of fact, this result is regarded as a powerful tool in the theory of fractional
integrals. For instance, we may easily obtain the semigroup property IαIβ = Iα+β. It may
be shown that this formula is satisfied even if we consider only integrable functions.

Proposition 2.22. Let Reα,Re β, L > 0, f ∈ L1(0, L). Then, there holds

IαIβf = Iα+βf.

The proof follows from the Fubini theorem and the following integral relation∫ b

a
(x−a)α−1(b−x)β−1dx = Γ(α)Γ(β)

Γ(α + β) (b−a)α+β−1 for Reα,Re β > 0, −∞ < a < b <∞.

(2.14)
Now we will introduce the definitions of the Riemann-Liouville and Caputo fractional

derivatives. Although, the fractional differential operators of arbitrary order α ∈ C,
with Reα > 0 may be defined, in this work we focus our attention only on the case
0 < Reα < 1.

Definition 2.18. Let 0 < Reα < 1. If f is regular enough ( the discussion about
appropriate regularity of f will be carried below) we may define the Riemann-
-Liouville fractional derivative

∂αf(x) = ∂

∂x
I1−αf(x) = 1

Γ(1− α)
∂

∂x

∫ x

0
(x− p)−αf(p)dp

and the Caputo fractional derivative

Dαf(x) = ∂

∂x
(I1−α[f(x)− f(0)]) = 1

Γ(1− α)
∂

∂x

∫ x

0
(x− p)−α[f(p)− f(0)]dp.

It is clear that for functions belonging to W 1,1(0, L) the foregoing fractional differential
operators are well defined. Moreover, if f belongs to W 1,1(0, L), then Dαf may be
equivalently written in the form

Dαf(x) = I1−αf ′(x) = 1
Γ(1− α)

∫ x

0
(x− p)−αf ′(p)dp. (2.15)
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The proper definition of the domain of these operators seems to be challenging itself.
Here, we will present a characterization of the domain of the Riemann-Liouville fractional
derivative in Lp - spaces. Let us define the operator of differentiation

∂

∂x
: D( ∂

∂x
) := 0W

1,p(0, L)→ Lp(0, L), ∂

∂x
u := u′ for p ∈ [1,∞]. (2.16)

Here, the space 0W
1,p denotes the subspace of W 1,p consisted of functions with vanishing

trace at zero. We will establish the following proposition.

Proposition 2.23. Let L > 0, p ∈ [1,∞], 0 < Reα < 1. Then, the Riemann-Liouville
fractional derivative ∂α, defined by Definition 2.18, as an operator acting on Lp(0, L)
coincides with the fractional power of differentiation operator defined by (2.16).

Proof. At first, we will show that ∂
∂x

is a positive operator in the sense of Definition 2.4
on Lp(0, L) for p ∈ [1,∞]. To show nonnegativity of ∂

∂x
we fix v ∈ Lp(0, L) and we search

for a solution to
λu+ ∂

∂x
u = v, Reλ > 0,

belonging to D( ∂
∂x

). We multiply the equation by eλx.
∂

∂x
(ueλx) = veλx.

Since u(0) = 0, we get
u =

∫ x

0
e−λ(x−p)v(p)dp (2.17)

and by the Young inequality for convolution

‖u‖Lp(0,L) ≤ ‖v‖Lp(0,L)

∥∥∥e−λx∥∥∥
L1(0,L)

≤
‖v‖Lp(0,L)

Reλ for Reλ > 0.

Obviously, zero belongs to the resolvent set of ∂
∂x

and ( ∂
∂x

)−1 = I, where I is an integration
operator defined in (2.10). Hence, ∂

∂x
is a positive operator in the sense of Definition 2.4.

The fractional powers of ∂
∂x

are defined due to Definition 2.7 in the following way

D(( ∂
∂x

)α) = {u ∈ Lp(0, L) : u ∈ R(Iα)}

and
( ∂
∂x

)α := ((( ∂
∂x

)−1)α)−1,

Making use of ( ∂
∂x

)−1 = I and applying Definition 2.9, we arrive at(
∂

∂x

)α
= I−α.

On the other hand, if u ∈ D(I−α), then u ∈ D(I1−α) = Lp(0, L). By Theorem 2.7
(applied with parameters −1, 1−α) we obtain that I1−αu ∈ D(I−1) and I−αu = I−1I1−αu.
Furthermore,

I−1I1−αu = ∂

∂x
I1−αu = ∂αu.

Summing up the results, we obtain that

( ∂
∂x

)αu = ∂αu for every u ∈ D(( ∂
∂x

)α) = D(I−α) = R(Iα). (2.18)
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Our aim is to characterize the domain of ∂α which coincides with the range of Iα in
Lp(0, L) for α ∈ (0, 1) and p ∈ (1,∞). In order to do it, we recall the result concerning
the boundedness of imaginary powers of ∂

∂x
.

Theorem 2.24. [21, Theorem 12.1.9] Let ∂
∂x

be defined by (2.16) and p ∈ (1,∞). Then,∥∥∥∥∥( ∂∂x)iτ
∥∥∥∥∥
Lp(0,L)

≤ c(1 + |τ |)e
π|τ |

2 for τ 6= 0,

where the imaginary powers are defined by Definition 2.9 and c is a positive constant which
depends only on p.

We are ready to formulate and prove the results concerning the characterization of the
domain of the Riemann-Liouville derivative in Lp(0, L).

Proposition 2.25. For L > 0, α ∈ (0, 1), p ∈ (1,∞) the operators Iα : Lp(0, L) −→
0H

α,p(0, L) and ∂α : 0H
α,p(0, L) −→ Lp(0, L) are isomorphism and the following inequali-

ties hold

c−1‖u‖0Hα,p(0,L) ≤ ‖∂αu‖Lp(0,L) ≤ c‖u‖0Hα,p(0,L) for u ∈ 0H
α,p(0, L),

c−1‖Iαf‖0Hα,p(0,L) ≤ ‖f‖Lp(0,L) ≤ c‖Iαf‖0Hα,p(0,L) for f ∈ Lp(0, L).

Here by 0H
α,p(0, L) we denote the fractional Lebesgue space defined by

0H
α,p(0, L) := [Lp(0, L), 0W

1,p(0, L)]α

and c denotes a positive constant dependent on α, p, L.

Proof. Applying Theorem 2.24 together with Theorem 2.8 we obtain that the domain of
( ∂
∂x

)α in Lp(0, L) is given by 0H
α,p(0, L). Hence, by Proposition 2.23 we obtain that if we

consider ∂α as an operator acting on Lp(0, L) we have D(∂α) = 0H
α,p(0, L) with norm

equivalence. Hence, ‖∂αu‖Lp(0,L) ≤ c ‖u‖
0Hα,p(0,L) for u ∈ 0H

α,p(0, L) and ‖Iαf‖
0Hα,p(0,L) ≤

c ‖f‖Lp(0,L) for f ∈ Lp(0, L). The two remaining inequalities follows from Corollary 2.6.

In this thesis we will work mainly in Hilbert spaces, hence the case of p = 2 in Proposi-
tion 2.25 is on particular interest. We will discuss this case in detail in Proposition 2.32.
We finish this section with a remark concerning the Caputo derivative.

Remark 2.5. Let L > 0 and 0 < α < 1. Let us discuss the operator ∂
∂x

defined in (2.16).
Then, the Balakrishnan operator Jα of ∂

∂x
coincides with the Caputo derivative Dα defined

in definition 2.18. Furthermore, the operator ∂α defined on 0H
α,p(0, L) for p ∈ (1,∞) is

the closure of Dα defined on 0W
1,p(0, L).
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Proof. Let us calculate the Balakrishnan operator of ∂
∂x
. For u ∈ D( ∂

∂x
) we have

Jαu = sinαπ
π

∫ ∞
0

λα−1
∫ x

0
e−λ(x−p)u′(p)dpdλ = sinαπ

π

∫ x

0
u′(p)

∫ ∞
0

λα−1e−λ(x−p)dλdp.

Applying substitution λ(x− p) = w and then the identities (2.13) and (2.15) we get

Jαu = 1
Γ(1− α)

∫ x

0
(x− p)−αu′(p)dp = Dαu,

hence, we obtained the first part of the statement. In view of Proposition 2.25, the second
part of statement follows directly from Proposition 2.5.

2.3. Properties of fractional operators

Now, we will present more elementary properties of fractional operators, that will
be used further. For a comprehensive studies on this subject we refer to standard
literature [11], [29].

Remark 2.6. Directly from the definition we may note that the Riemann-Liouville and
Caputo derivatives coincide for functions which vanish at zero. Moreover, for every
absolutely continuous f there holds

(Dαf)(x) = (∂αf)(x)− x−α

Γ(1− α)f(0).

Let us investigate how the fractional operators act on polynomial functions. This is a
very simple but useful example.

Example 2.1. Let α ∈ (0, 1), β > −1. Then,

Iαxβ = Γ(β + 1)
Γ(α + β + 1)x

β+α

and for β > 0
∂αxβ = Dαxβ = Γ(β + 1)

Γ(β + 1− α)x
β−α.

In the forthcoming chapters we will notice that the behaviour of fractional operators
acting on constant functions plays essential role in the theory of regularity of solutions to
fractional-differential equations. We formulate this observation in the next example.

Example 2.2. Let α > 0. Then

(Iα1)(x) = xα

Γ(α + 1) and for α ∈ (0, 1) (∂α1)(x) = x−α

Γ(1− α) , (Dα1)(x) = 0.

We note that the Riemann-Liouville fractional derivative, unlike the Caputo derivative,
does not vanish on constant functions. This rather unnatural behaviour of ∂α is one of
the reasons way the Caputo derivative is preferably used in many physical models.
As it was already mentioned, ∂α is well defined for absolutely continuous functions.
Proposition 2.25 gives us the characterization of the domain of ∂α in Lp. However, there
exist less regular functions such that their convolution with the kernel x−α is absolutely
continuous. For such functions ∂α is well defined as well. Let us provide an example.
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Example 2.3. Let α ∈ (0, 1). Applying (2.14) we obtain that

∂αxα−1 = 1
Γ(1− α)

∂

∂x

∫ x

0
(x− p)−αpα−1dp = ∂

∂x
Γ(α) = 0.

Obviously the function xα−1 is not absolutely continuous on [0, 1]. Furthermore,

xα−1 6∈ [Lp(0, 1), 0W
1,p(0, 1)]α

for any p ∈ (1,∞). Indeed, we fix p ∈ (1,∞) and we consider the operator Iα defined
on Lp(0, 1). In view of Proposition 2.25 it is enough to show that xα−1 6∈ R(Iα). Let
us suppose that there exists w ∈ Lp(0, 1) such that Iαw = xα−1. Then, ∂αIαw = w and
∂αxα−1 = 0. Hence w = 0, which leads to a contradiction with Iαw = xα−1 because
Iα0 = 0.
We note that, since xα−1 is not well defined at the origin, the Caputo fractional derivative
for this function is not well defined.

Considering the fractional derivatives we can not expect the usual formula for differen-
tiation of the product. However, we have the following result.

Proposition 2.26. Let L > 0, α ∈ (0, 1). If f, g ∈ AC[0, L] and g ∈ C0,β([0, L]) for
β ∈ (α, 1), then

∂α(f · g)(x) = g(x)(∂αf)(x) + α

Γ(1− α)

∫ x

0
(x− p)−α−1(g(x)− g(p))f(p)dp.

Proof. Let us perform the calculations

∂α(f · g)(x) = 1
Γ(1− α)

∂

∂x

∫ x

0
(x− p)−αf(p)g(p)dp

= 1
Γ(1− α)

∂

∂x

[
g(x)

∫ x

0
(x− p)−αf(p)dp

]
− 1

Γ(1− α)
∂

∂x

∫ x

0
(x− p)−αf(p)(g(x)− g(p))dp.

Since |g(x)− g(p)| ≤ ‖g‖C0,β(0,L) |x− p|
β we may differentiate the last integral and we

obtain
∂α(f · g)(x) = g′(x) 1

Γ(1− α)

∫ x

0
(x− p)−αf(p)dp+ g(x)∂αf(x)

+ α

Γ(1− α)

∫ x

0
(x− p)−α−1f(p)(g(x)− g(p))dp− g′(x) 1

Γ(1− α)

∫ x

0
(x− p)−αf(p)dp

= g(x)∂αf(x) + α

Γ(1− α)

∫ x

0
(x− p)−α−1f(p)(g(x)− g(p))dp.

We introduce the definition of Mittag-Leffler functions. These functions play an
important role in the theory of fractional calculus.

Definition 2.19. Let µ, ν ∈ R, ν > 0, then we define

Eν,µ(z) =
∞∑
n=0

zn

Γ(µ+ nν) and Eν(z) = Eν,1(z).
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Mittag-Leffler functions for positive ν and µ are entire functions with respect to z.
We may consider these functions as the generalizations of exponential functions, since
E1,1(z) = ez. The function Eα(λtα) plays a significant role while considering fractional
differential equations because it satisfies

DαEα(λtα) = λEα(λtα).

This identity may be easily proven applying term by term differentiation.
We present here, quite sophisticated result obtained in [24] which we will apply in the
next chapter.

Proposition 2.27. [24, Theorem 4.2.1] Let Eν,µ(·) denotes the Mittag-Leffler function.
If we suppose that either

0 < ν < 1, µ ∈ [1, 1 + ν] or ν ∈ (1, 2), µ ∈ [ν − 1, 1] ∪ [ν, 2],

then all roots of the function Eν,µ lie outside the angle

|arg z| ≤ πν

2 .

One of the fundamental issues, for solving the fractional differential equations with the
Caputo derivative, is to investigate whether the operator Iα acts like an operator inverse
to Dα. We cite here Lemma 2.21 from [11], however instead of the L∞ assumption we
assume Lp regularity.

Proposition 2.28. [11, Lemma 2.21] Let L > 0, α ∈ (0, 1). Then, we have

(DαIαf)(x) = f(x) for f ∈ Lp(0, L), p > 1
α
,

(IαDαf)(x) = f(x)− f(0) for f ∈ AC[0, L].

Proof. We note that if f ∈ Lp(0, L) for p > 1
α
, then we may apply Hölder inequality with

parameters p, p
p−1 to obtain

|Iαf(x)| =
∣∣∣∣∣ 1
Γ(α)

∫ x

0
(x− p)α−1f(p)dp

∣∣∣∣∣ ≤ ‖f‖ 1
p

Lp(0,L)

(
1

Γ(α)
p− 1
pα− 1

) p−1
p

x
pα−1
p

x→0−→ 0.

Hence, applying Remark 2.6, Definition 2.18 and Proposition 2.22 we arrive at

DαIαf = ∂αIαf = ∂

∂x
I1−αIαf = ∂

∂x
If = f.

To show the second identity we take f ∈ AC[0, L] and we apply formula (2.15) together
with Proposition 2.22 to obtain

(IαDαf)(x) = IαI1−αf ′(x) = If ′(x) = f(x)− f(0).

Now, we present an analogous result in the case of the fractional Riemann-Liouville
derivative.
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Proposition 2.29. [29, Theorem 2.4] Let α ∈ (0, 1) and L > 0. Then,

∂αIαf = f for f ∈ L1(0, L).

If f ∈ L1(0, L) is such that ∂αf ∈ L1(0, L), then we have

Iα∂αf(x) = f(x)− xα−1

Γ(α)I
1−αf(0),

where
I1−αf(0) := lim

x→0
I1−αf(x).

We note that the limit is well defined because by the assumption I1−αf is absolutely
continuous. In particular, if f additionally belongs to Lp(0, L) for p > 1

1−α then,

Iα∂αf = f.

Proof. If f is integrable then by Proposition 2.22 we have

∂αIαf = ∂

∂x
I1−αIαf = ∂

∂x
If = f.

Under the assumption ∂αf ∈ L1(0, L) we may write

Iα∂αf = Iα
∂

∂x
I1−αf = D1−αI1−αf = ∂1−α(I1−αf − I1−αf(0)),

where we used identity (2.15) and Definition 2.18. Applying the first part of the claim
and Example 2.2 we arrive at

Iα∂αf(x) = f(x)− I1−αf(0)x
α−1

Γ(α) .

If additionally f ∈ Lp(0, L) for p > 1
1−α we obtain by Hölder inequality (as in the proof of

Proposition 2.28) that I1−αf(0) = 0 and the proof is finished.

We illustrate how does the Proposition 2.29 work on an example.

Example 2.4. Let us discuss the function xα−1. Then, according to Proposition 2.29
we obtain that ∂αIαxα−1 = xα−1. However, Iα∂αxα−1 = 0 = xα−1 − xα−1

Γ(α) Γ(α), where
Γ(α) = (I1−αxα−1)(0).

Below we present a simple proposition which gives us the formula for the superposition
of ∂α and Dα.

Proposition 2.30. [15, Proposition 6.5] Let L > 0. For α, β ∈ (0, 1) such that α+ β ≤ 1
and f ∈ AC[0, L] we have ∂βDαf = Dα+βf.

Proof. Indeed, by Definition 2.18 and formula (2.15) we have

∂βDαf = ∂

∂x
I1−βI1−α ∂

∂x
f = ∂

∂x
I2−(β+α) ∂

∂x
f,

where in the last identity we applied Proposition 2.22. Further, we get

∂βDαf = ∂

∂x
II1−(β+α) ∂

∂x
f = I1−(β+α) ∂

∂x
f = Dα+βf.
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Remark 2.7. Although the relation ∂α∂β = ∂α+β is not true in general for absolutely
continuous functions, we may show that for absolutely continuous f and α ∈ (0, 1) there
holds

∂α∂1−αf = ∂

∂x
f.

Indeed, we apply firstly Remark 2.6 and then we use Example 2.3 to get

∂α∂1−αf = ∂α[D1−αf + xα−1

Γ(1− α)f(0)] = ∂αD1−αf = ∂

∂x
f.

Analogously to the fractional operators defined in Definition 2.17 and Definition 2.18
we may consider right-side operators.

Definition 2.20. Let L > 0. For Reα > 0 and f ∈ L1(0, L) we define

Iα−f(x) = 1
Γ(α)

∫ L

x
(p− x)α−1f(p)dp.

Analogously, for f regular enough and 0 < Reα < 1 we may define

∂α−f(x) = − ∂

∂x
(I1−α
− f)(x) and Dα

−f(x) = − ∂

∂x
I1−α
− [f(x)− f(L)].

All the properties discussed above may be easily transferred for the case of Iα−, ∂α− and Dα
−.

We present here, the proposition from [15] which provides the energy estimate for the
Riemann-Liouville fractional derivative. This estimate appears to be essential in further
considerations.

Proposition 2.31. [15, Proposition 6.10] If w ∈ AC[0, L], then for any α ∈ (0, 1) the
following equality holds∫ L

0
∂αw(x) · w(x)dx = α

4

∫ L

0

∫ L

0

|w(x)− w(p)|2

|x− p|1+α dpdx

+ 1
2Γ(1− α)

∫ L

0
[(L− x)−α + x−α] |w(x)|2 dx.

Hence, there exists a positive constant c which depends only on α,L, such that∫ L

0
∂αw(x) · w(x)dx ≥ c ‖w‖2

H
α
2 (0,L) (2.19)

and in particular ∫ L

0
∂αw(x) · w(x)dx ≥ L−α

2Γ(1− α)

∫ L

0
|w(x)|2 dx.

Proof. Let us perform the calculations. By Remark 2.6 we may write∫ L

0
∂αw(x) · w(x)dx =

∫ L

0
Dαw(x) · w(x)dx+ w(0)

Γ(1− α)

∫ L

0
x−αw(x)dx.

Next, by definition of Dα we have∫ L

0
∂αw(x)·w(x)dx = 1

Γ(1− α)

∫ L

0

∫ x

0
(x−p)−αw′(p)dp·w(x)dx+ w(0)

Γ(1− α)

∫ L

0
x−αw(x)dx

= 1
Γ(1− α)

∫ L

0

∫ x

0
(x− p)−αw′(p) · [w(x)− w(p)]dpdx+ w(0)

Γ(1− α)

∫ L

0
x−αw(x)dx

+ 1
Γ(1− α)

∫ L

0

∫ x

0
(x− p)−αw′(p)w(p)dpdx
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= −1
2

1
Γ(1− α)

∫ L

0

∫ x

0
(x− p)−α

(
|w(x)− w(p)|2

)
p
dpdx+ w(0)

Γ(1− α)

∫ L

0
x−αw(x)dx

+1
2

1
Γ(1− α)

∫ L

0

∫ x

0
(x− p)−α

(
|w(p)|2

)
p
dpdx

= α

2Γ(1− α)

∫ L

0

∫ x

0

|w(x)− w(p)|2
(x− p)α+1 dpdx− 1

2Γ(1− α)

∫ L

0
(x− p)−α|w(x)− w(p)|2

∣∣∣∣p=x
p=0

dt

+ w(0)
Γ(1− α)

∫ L

0
x−αw(x)dx+ 1

2Γ(1− α)

∫ L

0

(
|w(p)|2

)
p

∫ L

p
(x− p)−αdxdp.

Applying the Lebesgue integral differentiation theorem, we obtain that

(x− p)−1
∫ x

p
w′(s)ds p→x−−→ w′(x) for a.a. x

and thus

lim
p→x−

(x− p)−α|w(x)− w(p)|2 = lim
p→x−

(x− p)2−α
∣∣∣∣(x− p)−1

∫ x

p
w′(s)ds

∣∣∣∣2 = 0.

Hence, we obtain ∫ L

0
∂αw(x) · w(x)dx =

α

2Γ(1− α)

∫ L

0

∫ x

0

|w(x)− w(p)|2
(x− p)α+1 dpdx+ 1

2Γ(1− α)

∫ L

0
x−α|w(x)− w(0)|2dx

+ w(0)
Γ(1− α)

∫ L

0
x−αw(x)dx+ 1

2Γ(2− α)

∫ L

0
(L− p)1−α

(
|w(p)|2

)
p
dp

= α

2Γ(1− α)

∫ L

0

∫ x

0

|w(x)− w(p)|2
(x− p)α+1 dpdx+ 1

2Γ(1− α)

∫ L

0
x−α|w(x)− w(0)|2dx

+ w(0)
Γ(1− α)

∫ L

0
x−αw(x)dx+ 1

2
1

Γ(1− α)

∫ L

0
(L− p)−α|w(p)|2dp− 1

2
1

Γ(2− α)L
1−α|w(0)|2

= α

2Γ(1− α)

∫ L

0

∫ x

0

|w(x)− w(p)|2
(x− p)α+1 dpdx+ 1

2Γ(1− α)

∫ L

0
(L− p)−α|w(p)|2dp

+ 1
2Γ(1− α)

∫ L

0
p−α|w(p)|2dp

and the proof is finished.

Now, we will discuss in detail the results of Proposition 2.25 in the case p = 2. We
note that for p = 2 an alternative proof of Proposition 2.25 was given in [9]. At first let us
introduce the following functional spaces

0H
α(0, 1) =


Hα(0, 1) for α ∈ (0, 1

2),
{u ∈ H 1

2 (0, 1) :
∫ 1

0
|u(x)|2
x

dx <∞} for α = 1
2 ,

{u ∈ Hα(0, 1) : u(0) = 0} for α ∈ (1
2 , 1)

and

0Hα(0, 1) =


Hα(0, 1) for α ∈ (0, 1

2),
{u ∈ H 1

2 (0, 1) :
∫ 1

0
|u(x)|2

1−x dx <∞} for α = 1
2 ,

{u ∈ Hα(0, 1) : u(1) = 0} for α ∈ (1
2 , 1).
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We set ‖u‖
0Hα(0,1) = ‖u‖0Hα(0,1) = ‖u‖Hα(0,1) for α 6= 1

2 and

‖u‖
0H

1
2 (0,1)

=
(
‖u‖2

H
1
2 (0,1)

+
∫ 1

0

|u(x)|2

x
dx

) 1
2

,

‖u‖0H
1
2 (0,1)

=
(
‖u‖2

H
1
2 (0,1)

+
∫ 1

0

|u(x)|2

1− x dx
) 1

2

.

The spaces defined above may be equivalently defined in terms of complex interpolation
spaces, i.e.

0H
α(0, 1) = [L2(0, 1), 0H

1(0, 1)]α and 0Hα(0, 1) = [L2(0, 1), 0H1(0, 1)]α.

Here, by 0H
1(0, 1) we understand the subspace of H1(0, 1) consisting of functions which

trace vanishes at the left endpoint of the interval. Analogously, 0H1(0, 1) is a subspace of
H1(0, 1) consisting of functions which trace vanishes at the right endpoint of the interval.
The following proposition is the special case of Proposition 2.25. It can be found also in
the Appendix of [15] as an extended version of [9, Theorem 2.1].

Proposition 2.32. For α ∈ [0, 1] the operators Iα : L2(0, 1) −→ 0H
α(0, 1) and ∂α :

0H
α(0, 1) −→ L2(0, 1) are isomorphism and the following inequalities hold

c−1
α ‖u‖0Hα(0,1) ≤ ‖∂αu‖L2(0,1) ≤ cα‖u‖0Hα(0,1) for u ∈ 0H

α(0, 1),

c−1
α ‖Iαf‖0Hα(0,1) ≤ ‖f‖L2(0,1) ≤ cα‖Iαf‖0Hα(0,1) for f ∈ L2(0, 1).

Analogously, by the change of variables x 7→ 1 − x, we obtain that the operators Iα− :
L2(0, 1) −→ 0Hα(0, 1) and ∂α− : 0Hα(0, 1) −→ L2(0, 1) are isomorphism and there hold the
inequalities

c−1
α ‖u‖0Hα(0,1) ≤ ‖∂α−u‖L2(0,1) ≤ cα‖u‖0Hα(0,1) for u ∈ 0Hα(0, 1),

c−1
α ‖Iα−f‖0Hα(0,1) ≤ ‖f‖L2(0,1) ≤ cα‖Iα−f‖0Hα(0,1) for f ∈ L2(0, 1).

Here cα denotes a positive constant dependent on α.

Corollary 2.33. For α, β > 0 there holds Iβ : 0H
α(0, 1)→ 0H

α+β(0, 1), where in the case
γ > 1

0H
γ(0, 1) = {f ∈ Hγ(0, 1) : f (k)(0) = 0, k = 0, . . . , bγc − 1, f (bγc) ∈ 0H

γ−bγc(0, 1)}.

Furthermore, there exists a positive constant c dependent only on α, β such that for every
f ∈ 0H

α(0, 1) ∥∥∥Iβf∥∥∥
0Hα+β(0,1)

≤ c ‖f‖
0Hα(0,1) .

Proof. It is an easy consequence of Proposition 2.32. If f ∈ 0H
α(0, 1) then, f (bαc) ∈

0H
α−bαc(0, 1). By Proposition 2.32, there exists w ∈ L2(0, 1) such that f (bαc) = Iα−bαcw.

Hence, applying Proposition 2.22 we get

f = Ibαcf (bαc) = IbαcIα−bαcw = Iαw.
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Iβf = IβIαw = Iα+βw = Ibβ+αcIβ+α−bβ+αcw. (2.20)

If α + β ≤ 1, then applying again Proposition 2.32 we obtain that Iβf ∈ 0H
α+β(0, 1).

Moreover, we note that w = ∂αf and by Proposition 2.32 we have∥∥∥Iβf∥∥∥
0Hα+β(0,1)

=
∥∥∥Iα+βw

∥∥∥
0Hα+β(0,1)

≤ c(α, β) ‖w‖L2(0,1) ≤ c(α, β) ‖f‖
0Hα(0,1) .

In the case 1 < α + β from (2.20) we infer that

(Iβf)(k)(0) = 0 for k = 0, . . . , bβ + αc − 1 (2.21)

and by Proposition 2.32

(Iβf)(bβ+αc) = Iβ+α−bβ+αcw ∈ 0H
β+α−bβ+αc(0, 1).

Due to (2.21) we may apply Poincaré inequality to obtain∥∥∥Iβf∥∥∥
0Hα+β(0,1)

≤ c
∥∥∥(Iβf)(bβ+αc)

∥∥∥
0Hα+β−bα+βc(0,1)

=
∥∥∥Iβ+α−bβ+αcw

∥∥∥
0Hα+β−bα+βc(0,1)

≤ c ‖w‖L2(0,1) ≤ c
∥∥∥∂α−bαcf (bαc)

∥∥∥
L2(0,1)

≤ c
∥∥∥f (bαc)

∥∥∥
0Hα−bαc(0,1)

≤ c ‖f‖
0Hα(0,1) ,

where we applied Proposition 2.32 and c = c(α, β).

In subsequent parts of this thesis we will make use of the following local property
established in [28].

Lemma 2.34. Let f ∈ 0H
α(0, 1) for α ∈ (0, 1) and ∂αf ∈ Hβ

loc(0, 1) for β ∈ (1
2 , 1]. Then

f ∈ Hβ+α
loc (0, 1) and for every 0 < δ < ω < 1 there exists a positive constant c = c(δ, ω, α, β)

such that
‖f‖Hβ+α(δ,ω) ≤ c(‖f‖

0Hα(0,ω) + ‖∂αf‖Hβ( δ2 ,ω)). (2.22)

Proof. Let us fix 0 < δ < ω < 1. Then, by the assumption we have ∂αf ∈ Hβ( δ2 , ω).
Applying Proposition 2.32, for x > δ/2 we may write

f(x) = Iα∂αf(x) = Iα(∂αf − ∂αf(δ/2))(x) + Iα(∂αf(δ/2))(x)

= 1
Γ(α)

∫ δ
2

0
(x− p)α−1(∂αf(p)− ∂αf(δ/2))dp+ 1

Γ(α)

∫ x

δ
2

(x− p)α−1(∂αf(p)− ∂αf(δ/2))dp

+ 1
Γ(α)∂

αf(δ/2)
∫ δ

2

0
(x− p)α−1dp+ 1

Γ(α)∂
αf(δ/2)

∫ x

δ
2

(x− p)α−1dp

= 1
Γ(α)

∫ δ
2

0
(x− p)α−1∂αf(p)dp+ Iαδ

2
(∂αf − ∂αf(δ/2))(x) + 1

Γ(1 + α)(x− δ/2)α∂αf(δ/2),

where we applied Definition 2.17 and we denoted Iαa f(x) := 1
Γ(α)

∫ x
a (x− p)α−1f(p)dp. We

note that by Corollary 2.32, the second component belongs to 0H
α+β( δ2 , ω). The first and

third component belong to Hα+β(δ, ω) because they are smooth on the interval (δ, ω).
Thus f ∈ Hα+β(δ, ω). Moreover,

‖f‖Hα+β(δ,ω) ≤ c(α, β, δ, ω)[‖∂αf‖L2(0,ω) + ‖∂αf‖
0Hβ( δ2 ,ω) + |∂αf(δ/2)|].
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To show the estimate (2.22) it is enough to apply Proposition 2.32 together with the
Sobolev estimate |∂αf(δ/2)| ≤ c ‖∂αf‖Hβ(δ/2,w) which holds because β > 1

2 .

We finish this section with two propositions from [27] which provide us an extension
of Iα and ∂α into wider functional spaces. The similar reasoning to the one carried in
Proposition 2.35 may be found in [7, Lemma 5].

Proposition 2.35. For α ∈ (0, 1
2) the operators Iα and Iα− can be extended to bounded

and linear operators from H−α(0, 1) := (Hα
0 (0, 1))′ to L2(0, 1).

Here zero in the lower right index denotes vanishing trace at the boundary.

Proof. We will prove the claim only for Iα while the proof for Iα− is analogous. By the
Fubini theorem for u, v ∈ L2(0, 1) we obtain

(Iαu, v) =
(
u, Iα−v

)
. (2.23)

Applying Proposition 2.32 we obtain that Iα−v ∈ 0Hα(0, 1) and we may estimate

|(Iαu, v)| ≤
∥∥∥Iα−v∥∥∥Hα(0,1)

‖u‖(Hα(0,1))′ ≤ cα ‖v‖L2(0,1) ‖u‖H−α(0,1) ,

where we used the fact that for α < 1
2 we have Hα

0 (0, 1) = Hα(0, 1) and thus (Hα
0 (0, 1))′ =

(Hα(0, 1))′. The last inequality finishes the proof.

Proposition 2.36. For α ∈ (0, 1
2) the operators ∂α and ∂α− can be extended to bounded

and linear operators from L2(0, 1) to H−α(0, 1).

Proof. As in the previous proposition, we will prove the statement only for ∂α, because
in the case ∂α− the proof is analogous. Let us assume that f, v ∈ Hα(0, 1). (We recall
that for α ∈ (0, 1

2) the space Hα(0, 1) coincides with 0Hα(0, 1) and 0H
α(0, 1)). Then, from

Proposition 2.32, there exist g ∈ L2(0, 1) such that ∂αf = g and w ∈ L2(0, 1) such that
v = Iα−w. Thus, we have

(∂αf, v) =
(
g, Iα−w

)
= (Iαg, w) =

(
f, ∂α−v

)
.

Making use of Proposition 2.32 one more time, we may estimate

|(∂αf, v)| ≤ ‖f‖L2(0,1)

∥∥∥∂α−v∥∥∥L2(0,1)
≤ cα ‖f‖L2(0,1) ‖v‖Hα(0,1) ,

Hence, the identity (∂αf, v) =
(
f, ∂α−v

)
extends ∂α to a bounded and linear operator from

L2(0, 1) to (Hα(0, 1))′. Since the space (Hα(0, 1))′ coincides with H−α(0, 1) for α ∈ (0, 1
2)

the proof is finished.
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2.4. Derivation of space-fractional Stefan model

In the next chapter we will investigate the properties of the operator ∂
∂x
Dα. To motivate

our study we discuss here the free boundary problem of space-fractional diffusion which
was proposed in [32]. Here, we present a derivation of the model. The solution to this
problem will be obtained in Chapter 4.
We will use a terminology of a heat transfer and the phenomenon of changing the phase of
medium from solid to liquid. However, the following model may describe other anomalous
diffusion processes as well, for example the mass transport and solidification of substances
in complex media.
We consider the domain (0,∞). We assume that at the initial time t = 0 the domain is
divided into two parts (0, b), which can be regarded as liquid, and (b,∞), which can be
regarded as solid. We define the enthalpy function by E = u + ϕ. Here u(x, t) denotes
temperature of medium at point x in time t and ϕ denotes the latent heat. We consider
a one-phase problem, hence we assume that u ≡ 0 at solid. Furthermore, we consider
sharp-interphase problem. This means that the function ϕ has the form

ϕ =

 1 in liquid,
0 in solid.

We denote by q(x, t) the flux at point x at time t and we assume the following non-local
form of the flux

q(x, t) =

 −D
αu(x, t) in liquid,

0 in solid.
(2.24)

We note that since we discuss one-phase problem we have to put zero flux in the solid
domain. In this setting the principle of energy conservation takes the following form. For
every (a, d) ⊆ (0,∞) there hold

d

dt

∫ d

a
E(x, t)dx = q(a, t)− q(d, t). (2.25)

We will derive the space-fractional Stefan problem from the formulas (2.24) and (2.25). Let
us denote by s(t) the interface. Then, at time t the liquid occupies (0, s(t)) and (s(t),∞)
belongs to the solid domain. Let us fix T > 0 an arbitrary time. We denote the space-time
domain occupied by the liquid by

Qs,T := {(x, t) : 0 < x < s(t), 0 < t < T}.

In order to derive the model, we impose the following regularity properties

s ∈ AC[0, T ], ut(·, t) ∈ L1(0, s(t)) for every t ∈ (0, T ), (2.26)

Dαu(·, t) ∈ C[0, s(t)] ∩ ACloc(0, s(t)) for every t ∈ (0, T ). (2.27)
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We may verify that the solution (u, s) obtained in Theorem 4.1 in Chapter 4 satisfies the
assumptions above. In fact, it has higher regularity. We take (a, t), (d, t) ∈ Qs,T , such that
a < d and we apply conservation law formula (2.25) to get

d

dt

∫ d

a
E(x, t)dx = q(a, t)− q(d, t).

Hence,
d

dt

∫ d

a
u(x, t) + 1dx = Dαu(d, t)−Dαu(a, t).

Under assumption (2.27) we may write∫ d

a
ut(x, t)dx =

∫ d

a

∂

∂x
Dαu(x, t)dx.

Since the interval (a, d) was arbitrary we obtain

ut = ∂

∂x
Dαu in Qs,T .

In order to obtain an equation for the interface s(·) we take arbitrary (a, t) ∈ Qs,T and
arbitrary d > s(t). Then we may write the conservation law for an interval (a, d)

d

dt

∫ d

a
E(x, t)dx = q(a, t)− q(d, t).

Since q(d, t) = 0 we have

d

dt

∫ s(t)

a
u(x, t) + 1dx+ d

dt

∫ d

s(t)
u(x, t)dx = −Dαu(a, t).

We assume that at the free boundary the medium is in the phase-change temperature, i. e.
u(s(t), t) = 0 and the function u vanishes in solid, thus we arrive at∫ s(t)

a
ut(x, t)dx+ ṡ(t) = −Dαu(a, t).

Passing with a to s(t) and applying the assumptions (2.26) and (2.27) we get

ṡ(t) = −Dαu(s(t), t) in (0, T ).

We complement our system with initial and boundary conditions. On the left endpoint of
the interval we assume zero Neumann boundary condition, however other options are also
possible. Finally, we obtain the system of equations

ut − ∂
∂x
Dαu = 0 in Qs,T ,

ux(0, t) = 0, u(t, s(t)) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) for 0 < x < s(0) = b,

ṡ(t) = −(Dαu)(s(t), t) for t ∈ (0, T ).

(2.28)

We will solve this problem in Chapter 4.
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2.5. Derivation of time-fractional Stefan model

In this section we will derive the one-phase time-fractional Stefan model. We consider
the same setting as in the previous section, however now, following [33], we assume that
the flux is given by the Riemann-Liouville fractional derivative with respect to the time
variable, i.e.

q(x, t) = −∂1−αux(x, t) = − 1
Γ(α)

d

dt

∫ t

0
(t− τ)α−1ux(x, τ)dτ. (2.29)

The derivation of model presented in this section comes from [14]. We will proceed as in
the previous section, i.e. we will derive the model from energy conservation formula (2.25),
however now the diffusive flux is given by (2.29). Again we will use the terminology of the
heat transfer, however we note that the model may be applied also to other anomalous
diffusion processes. In order to derive the model rigorously we have to impose certain
regularity conditions on the interface s and the temperature function u. We fix t∗ > 0 and
we denote

Qs,t∗ = {(x, t) : 0 < x < s(t), t ∈ (0, t∗)}.

The standard setting of the initial-boundary conditions for the Stefan problem is the
following

u(x, 0) = u0(x) ≥ 0 and u(0, t) = uD(t) ≥ 0 or ux(0, t) = uN(t) ≤ 0.

We expect that if u0 ≡ 0, uD ≡ 0 or u0 ≡ 0, uN ≡ 0, then u ≡ 0. Otherwise, we expect

ṡ(t) > 0, (A1)

i.e. melting of solid. Secondly, we assume that

s ∈ AC[0, t∗], ux(x, ·) ∈ AC[s−1(x), t∗] for every x ∈ (0, s(t∗)),

ux(·, t) ∈ AC[0, s(t)− ε] for every ε > 0 and every t ∈ (0, t∗), (A2)

ut(·, t) ∈ L1(0, s(t)) for each t ∈ (0, t∗).

We note that since we consider one-phase Stefan problem the temperature in the solid
vanishes. Therefore, the flux is nonzero only in the liquid part of the domain, i.e. in Qs,t∗

and it is given by the formula

q(x, t) =

 −∂
1−α
s−1(x)ux(x, t) for (x, t) ∈ Qs,t∗ ,

0 for (x, t) 6∈ Qs,t∗ ,
(2.30)

where

∂1−α
s−1(x)ux(x, t) =


1

Γ(α)
d
dt

∫ t
0(t− τ)α−1ux(x, τ)dτ for x ≤ s(0),

1
Γ(α)

d
dt

∫ t
s−1(x)(t− τ)α−1ux(x, τ)dτ for x > s(0).

(2.31)

The last of the regularity assumptions, that we will take advantage of, are

ṡ(t) ∈ L∞loc((0, t∗]) and Dα
s−1(x)u(·, t) ∈ L1(0, s(t)) for t ∈ (0, t∗). (A3)

Now we are ready to formulate the result.
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Theorem 2.37. Let us discuss the sharp one-phase one-dimensional Stefan problem
with the boundary condition u(s(t), t) = 0. Then, under the assumptions (A1)-(A2), the
conservation law (2.25) with the flux given by (2.29) leads to the following equation

Dα
s−1(x)u(x, t)− uxx(x, t) =

 0 for x < s(0),
− 1

Γ(1−α)(t− s
−1(x))−α for x ∈ (s(0), s(t))

(2.32)

for a.a. (x, t) ∈ Qs,t∗, where

Dα
s−1(x)u(x, t) =


1

Γ(1−α)
∫ t

0(t− τ)−α d
dτ
u(x, τ)dτ for x ≤ s(0),

1
Γ(1−α)

∫ t
s−1(x)(t− τ)−α d

dτ
u(x, τ)dτ for x > s(0).

(2.33)

Moreover, functions u and s are related by the formula

ṡ(t) = − lim
a↗s(t)

∂1−α
s−1(a)ux(a, t) = − 1

Γ(α) lim
a↗s(t)

[
d

dt

∫ t

s−1(a)
(t− τ)α−1ux(a, τ)dτ

]
. (2.34)

Furthermore, if (A3) holds, then the additional boundary condition

u−x (s(t), t) := lim
ε→0+

u−x (s(t)− ε, t) = 0 (2.35)

is satisfied.

We note that the equation (2.32) with the condition (2.34) have been already obtained
in [25]. However, here we obtained the additional relation (2.35).

Proof. In order to derive the system of equations from (2.25), we apply the principle of
energy conservation to an arbitrary subset V of the domain at time t ∈ (0, t∗). We will
consider two cases.
— If V = (a, b) ⊆ (0, s(0)), then from (A1) we have V ⊆ (0, s(t)) for each t ∈ (0, t∗)
and (2.25) gives

d

dt

[∫
V
u(x, t) + 1dx

]
= ∂1−αux(b, t)− ∂1−αux(a, t).

Hence, ∫
V

d

dt
u(x, t)dx = ∂1−αux(b, t)− ∂1−αux(a, t).

We apply the fractional integral I1−α with respect to the time variable to both sides of
the identity and with a use of assumption (A2) we arrive at∫

V
Dαu(x, t)dx = ux(b, t)− ux(a, t).

Indeed, we note that since ux is absolutely continuous with respect to time we may
apply Proposition 2.29 to get

I1−α∂1−αux(x, t) = ux(x, t).

By the fundamental theorem of calculus we obtain∫
V

[Dαu(x, t)− uxx(x, t)]dx = 0.

Since V ⊆ (0, s(0)) is arbitrary, we get

Dαu(x, t)− uxx(x, t) = 0 for (x, t) ∈ (0, s(0))× (0, t∗). (2.36)
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— If V = (a, b), where s(0) < a < s(t) < b, then (2.25) has the form
d

dt

[∫ s(t)

a
u(x, t) + 1dx

]
= q(a, t) = −∂1−α

s−1(a)ux(a, t).

Differentiating the integral on the left hand side leads to∫ s(t)

a

d

dt
u(x, t)dx+ ṡ(t)[u(s(t), t) + 1] = −∂1−α

s−1(a)ux(a, t).

Applying u(s(t), t) = 0, we get∫ s(t)

a

d

dt
u(x, t)dx+ ṡ(t) = −∂1−α

s−1(a)ux(a, t). (2.37)

If a↗ s(t), then by the assumption (A2) the first term vanishes and as a consequence
we arrive at (2.34). Next, if we apply the operator I1−α

s−1(a) to both sides of (2.37), then
we obtain

1
Γ(1− α)

∫ t

s−1(a)
(t− τ)−α

∫ s(τ)

a

d

dτ
u(x, τ)dxdτ + 1

Γ(1− α)

∫ t

s−1(a)
(t− τ)−αṡ(τ)dτ

= −I1−α
s−1(a)∂

1−α
s−1(a)ux(a, t). (2.38)

We note that by the assumption (A2) we have that ux(a, ·) ∈ AC[s−1(a), t∗] hence, by
Proposition 2.29, we get

I1−α
s−1(a)∂

1−α
s−1(a)ux(a, t) = ux(a, t).

If we apply the Fubini theorem to the first term in (2.38), then we arrive at the identity

∫ s(t)

a
Dα
s−1(x)u(x, t)dx+ 1

Γ(1− α)

∫ t

s−1(a)
(t− τ)−αṡ(τ)dτ = −ux(a, t). (2.39)

Applying the substitution τ = s−1(x) we get∫ t

s−1(a)
(t− τ)−αṡ(τ)dτ =

∫ s(t)

a
(t− s−1(x))−αdx.

We allow that ux(·, t) may admit singular behaviour near the phase change point. Thus,
we proceed very carefully. We fix ε > 0 such that a < s(t)− ε, then, by (A2) we have

−ux(a, t) =
∫ s(t)−ε

a
uxx(x, t)dx− ux(s(t)− ε, t).

Making use of this identity in (2.39) we obtain∫ s(t)−ε

a

[
Dα
s−1(x)u(x, t)− uxx(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx

= −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)u(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx− ux(s(t)− ε, t). (2.40)

Let us choose arbitrary ã such that s(0) < ã < a. Repeating the above calculations for
ã instead of a, we obtain that∫ s(t)−ε

ã

[
Dα
s−1(x)u(x, t)− uxx(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx

= −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)u(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx− ux(s(t)− ε, t). (2.41)
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Subtracting the sides of (2.40) and (2.41) we arrive at∫ a

ã

[
Dα
s−1(x)u(x, t)− uxx(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx = 0 (2.42)

for arbitrary a, ã ∈ (s(0), s(t)− ε) hence, we may deduce that

Dα
s−1(x)u(x, t)− uxx(x, t) + 1

Γ(1− α)(t− s−1(x))−α = 0 for x ∈ (s(0), s(t)), (2.43)

i.e. (2.32) is proven.
It remains to show (2.35). From (2.41) and (2.43) we infer that

0 = −
∫ s(t)

s(t)−ε

[
Dα
s−1(x)u(x, t) + 1

Γ(1− α)(t− s−1(x))−α
]
dx− ux(s(t)− ε, t).

In order to obtain additional information about ux(s(t), t), we employ further regularity
assumptions. Applying (A3) we immediately get

lim
ε→0+

∫ s(t)

s(t)−ε
(t− s−1(x))−αdx = 0 and lim

ε→0+

∫ s(t)

s(t)−ε
Dα
s−1(x)u(x, t)dx = 0. (2.44)

Making use of (2.44) we obtain

lim
ε→0+

ux(s(t)− ε, t) = 0, (2.45)

hence, we arrive at (2.35), which finishes the proof of Theorem 2.37.

We will find a special solution to the system obtained in Theorem 2.37 in Chapter 5.





Chapter 3

Operator ∂
∂xD

α as a generator of an analytic
semigroup

In this chapter we investigate the operator ∂
∂x
Dα from the perspective of operator

theory. We will proceed as follows. At first, we will characterize the domain of ∂
∂x
Dα in

L2(0, 1). Then, we will show that ∂
∂x
Dα generates a C0 -semigroup of contractions. Finally,

we will prove, by an appropriate estimate of the resolvent operator, that this semigroup
may be extended to an analytic semigroup on a sector of complex plane. The results from
the first section of this chapter, apart from Theorem 3.7, come from [27].

3.1. Case with mixed boundary conditions

Applying the identity (2.15) and then making use of Definition 2.18, we note that

∂

∂x
Dαu = ∂

∂x
I1−αux = ∂αux, (3.1)

whenever one of the sides of this identity is meaningful. By Proposition 2.32, the domain
of ∂α in L2(0, 1) coincides with 0H

α(0, 1). Thus, we may consider the domain of ∂
∂x
Dα

as {u ∈ H1+α(0, 1) : ux ∈ 0H
α(0, 1)}. We complement the definition of domain with a

boundary condition u(1) = 0 and we arrive at

D( ∂
∂x
Dα) ≡ Dα := {u ∈ H1+α(0, 1) : ux ∈ 0H

α(0, 1), u(1) = 0}. (3.2)

We equip Dα with the norm

‖f‖Dα = ‖f‖H1+α(0,1) for α ∈ (0, 1) \ {1
2}

and

‖f‖Dα =
(
‖f‖2

H
3
2 (0,1)

+
∫ 1

0

|ux(x)|2

x
dx

) 1
2

for α = 1
2 .
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For clarity, let us describe how the space Dα looks like in dependence of α. If α ∈ (0, 1
2)

we have Dα = {u ∈ H1+α(0, 1) : u(1) = 0}, for α = 1
2 there holds Dα = {u ∈ H 3

2 (0, 1) :
ux ∈ 0H

1
2 (0, 1), u(1) = 0} and in the case α ∈ (1

2 , 1) we have Dα = {u ∈ H1+α(0, 1) :
ux(0) = 0, u(1) = 0}.
We note that if we prove that ∂

∂x
Dα : Dα → L2(0, 1) generates an analytic semigroup, we

will obtain existence and regularity results for a solution to
ut − ∂

∂x
Dαu = f in (0, 1)× (0, T ),

ux ∈ 0H
α(0, 1), u(1, t) = 0 for t ∈ (0, T ),

u(x, 0) = u0(x) in (0, 1).
(3.3)

In forthcoming sections we will also discuss the case with different boundary conditions.
However, at first we investigate (3.3).

Theorem 3.1. Operator ∂
∂x
Dα : Dα ⊆ L2(0, 1) → L2(0, 1) generates a C0 semigroup of

contractions.

Proof. We will prove Theorem 3.1 applying the Lumer-Philips theorem (see Theorem 2.9).
At first we note that ∂

∂x
Dα is densely defined in L2(0, 1), because C∞0 (0, 1) ⊆ Dα. In

order to verify the assumptions of Lumer-Philips theorem we need to show in addition
that ∂

∂x
Dα is dissipative and that R(I − ∂

∂x
Dα) = L2(0, 1). (We recall that the definition

of dissipative operator was given in Definition 2.12). In order to show dissipativity of
∂
∂x
Dα we consider u ∈ Dα. Since ux ∈ 0H

α(0, 1), then from Corollary 2.33 we know that
Dαu = I1−αux ∈ 0H

1(0, 1). Hence, in particular Dαu ∈ AC[0, 1] and (Dαu)(0) = 0. We
apply the integration by parts formula and Proposition 2.30 to obtain

Re
(
− ∂

∂x
Dαu, u

)
= −Re

∫ 1

0
( ∂
∂x
Dαu)(x) · u(x)dx

=
∫ 1

0
Dα Reu(x) · ∂

∂x
Reu(x)dx+

∫ 1

0
Dα Im u(x) · ∂

∂x
Im u(x)dx

=
∫ 1

0
Dα Reu(x) · ∂1−αDα Reu(x)dx+

∫ 1

0
Dα Im u(x) · ∂1−αDα Im u(x)dx.

We may apply inequality (2.19) with w = Dα Reu and w = Dα Im u to obtain

Re
(
− ∂

∂x
Dαu, u

)
≥ cα ‖Dαu‖2

H
1−α

2 (0,1)
≥ cα

∥∥∥∂ 1−α
2 Dαu

∥∥∥2

L2(0,1)

= cα
∥∥∥D 1+α

2 u
∥∥∥2

L2(0,1)
, (3.4)

where in the second inequality we used Proposition 2.32 together with the fact that 1−α
2 < 1

2

and the equality follows from Proposition 2.30. Here cα > 0 denotes a generic constant
dependent on α.
Now, we would like to show that R(E − ∂

∂x
Dα) = L2(0, 1). In fact, we are able to show

something more. We will state the result in the next lemma.
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Lemma 3.2. For every λ ∈ C belonging to the sector

ϑα := {z ∈ C \ {0} : |arg z| ≤ π(α + 1)
2 } ∪ {0} (3.5)

there holds
R(λE − ∂

∂x
Dα) = L2(0, 1).

Proof. To prove the lemma we fix g ∈ L2(0, 1) and λ belonging to ϑα. We must prove that
there exists u ∈ Dα such that

λu− ∂

∂x
Dαu = g. (3.6)

We would like to calculate the solution directly. To that end, we will firstly solve equation
(3.6) with an arbitrary boundary condition u(0) = u0 ∈ C. Then, we will choose u0 which
will guarantee the zero condition at the other endpoint of the interval. We note that if we
search for a solution in {f ∈ H1+α(0, 1) : fx ∈ 0H

α(0, 1)}, then equation (3.6) is equivalent
to

u = u0 + λIα+1u− Iα+1g. (3.7)

Indeed, if we recall identity (3.1) and assume that ux ∈ 0H
α(0, 1), then applying Iα to

both sides of (3.6) yields
ux = λIαu− Iαg.

After having integrated this equality we arrive at (3.7). On the other hand, if we assume
that u ∈ L2(0, 1) solves (3.7), then by Proposition 2.32 it automatically belongs to
{f ∈ H1+α(0, 1) : fx ∈ 0H

α(0, 1)} and in order to obtain (3.6) it is enough to apply ∂α ∂
∂x

to (3.7).
Thus, we are going to solve (3.7). For this purpose, we apply to (3.7) the operator Iα+1

and we obtain
Iα+1u = Iα+1u0 + λI2(α+1)u− I2(α+1)g.

Inserting this result in (3.7) we get

u(x) = u0 − (Iα+1g)(x) + λ(Iα+1u0)(x) + λ2(I2(α+1)u)(x)− λ(I2(α+1)g)(x).

Iterating this procedure n times we arrive at

u(x) = u0

n∑
k=0

(λkIk(α+1)1)(x)−
n∑
k=0

λk(I(k+1)(α+1)g)(x) + λn+1(I(n+1)(α+1)u)(x). (3.8)

We will show, that the last expression tends to zero as n→∞. Indeed, we may note that,
since we search for the solutions in H1+α(0, 1) ⊆ L∞(0, 1) and due to the presence of the
Γ-function in the denominator we have∣∣∣λn(In(α+1)u)(x)

∣∣∣ ≤ ‖u‖L∞(0,1)
|λ|n x(α+1)n

Γ((α + 1)n+ 1) ≤
‖u‖L∞(0,1) |λ|

n

Γ((α + 1)n+ 1) → 0 as n→∞

for each λ ∈ C uniformly with respect to x ∈ [0, 1]. Thus, passing to the limit with n

in (3.8) we obtain the formula

u(x) = u0

∞∑
k=0

(λkIk(α+1)1)(x)−
∞∑
k=0

λk(I(k+1)(α+1)g)(x). (3.9)
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We will show that both series in (3.9) are uniformly convergent and we will calculate
their sums. Indeed, we may directly compute the sum of the series. We note that by the
Example 2.2

(Ik(α+1)1)(x) = xk(α+1)

Γ(k(α + 1) + 1) .

Hence,
∞∑
k=0

λk(I(α+1)k1)(x) = Eα+1(λxα+1), (3.10)

where Eα+1 denotes the Mittag-Leffler function given by Definition 2.19. To calculate the
sum of the second series, we apply the definition of fractional integral (see Definition 2.18)

I(α+1)(k+1)g(x) =
∫ x

0
g(s) (x− s)(α+1)k+α

Γ((α + 1)k + α + 1)ds.

In order to interchange the order of integration and summation, we will firstly consider
the finite sum and then we will pass to the limit,

∞∑
k=0

λk
∫ x

0
g(s) (x− s)(α+1)k+α

Γ((α + 1)k + α + 1)ds = lim
n→∞

n∑
k=0

λk
∫ x

0
g(s) (x− s)(α+1)k+α

Γ((α + 1)k + α + 1)ds

= lim
n→∞

∫ x

0
g(s)

n∑
k=0

λk
(x− s)(α+1)k+α

Γ((α + 1)k + α + 1)ds.

We would like to apply the Lebesgue dominated convergence theorem, thus we need to
indicate the majorant. We may estimate as follows∣∣∣∣∣g(s)

n∑
k=0

λk
(x− s)(α+1)k+α

Γ((α + 1)k + α + 1)

∣∣∣∣∣ ≤ |g(s)|
∞∑
k=0

|λ|k

Γ((α + 1)k + α + 1)
= |g(s)|Eα+1,α+1(|λ|)

and the last function is integrable because g ∈ L2(0, 1). Hence, applying the Lebesgue
dominated convergence theorem we arrive at

∞∑
k=0

λk(I(α+1)(k+1)g)(x) = g ∗ xα
∞∑
k=0

(λxα+1)k
Γ((α + 1)k + (α + 1)) .

Finally, using this result together with (3.10) we obtain that the function u given by (3.9)
may be written by the following formula

u(x) = u0Eα+1(λxα+1)− g ∗ xαEα+1,α+1(λxα+1). (3.11)

We note that this function actually satisfies (3.7). Indeed, applying Example 2.2 we may
calculate

λIα+1u = u0

∞∑
k=0

λk+1I(α+1)(k+1)1(x)− λ
∞∑
k=0

I(α+1)(k+2)g(x)

= u0

∞∑
k=0

(λxα+1)k+1

Γ((α + 1)(k + 1) + 1) − g ∗
∞∑
k=0

λk+1x(α+1)(k+2)−1

Γ((α + 1)(k + 2))

= u0

∞∑
k=1

(λxα+1)k
Γ((α + 1)k + 1) − g ∗

∞∑
k=1

λkx(α+1)(k+1)−1

Γ((α + 1)(k + 1)) .
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Hence,

u0+λIα+1u−Iα+1g = u0

[
1 +

∞∑
k=1

(λxα+1)k
Γ((α + 1)k + 1)

]
−g∗

[ ∞∑
k=1

λkx(α+1)(k+1)−1

Γ((α + 1)(k + 1)) + xα

Γ(α + 1)

]
and the last formula is equal to u. Thus, u given by formula (3.11) is a solution to (3.7)
and hence it is also a solution to (3.6) with a boundary condition u(0) = u0. It remains to
solve equation (3.6) with the zero condition at the right endpoint of the interval. For this
purpose, we take x = 1 in (3.11) and we obtain

u(1) = u0Eα+1(λ)− (g ∗ yαEα+1,α+1(λyα+1))(1).

To obtain u(1) = 0 we take

u0 = (Eα+1(λ))−1(g ∗ yαEα+1,α+1(λyα+1))(1).

We note that u0 is well defined because, taking ν = α+ 1, µ = 1 in Proposition 2.27, we
obtain that Eα+1(λ) 6= 0 for λ belonging to the sector ϑ. Inserting this u0 in (3.11) we
obtain a formula for a solution to (3.6) which belongs to Dα:

u(x) = (Eα+1(λ))−1(g ∗ yαEα+1,α+1(λyα+1))(1)Eα+1(λxα+1)− g ∗ xαEα+1,α+1(λxα+1).

In this way we proved the lemma.

Lemma 3.2 together with the dissipative property of ∂
∂x
Dα allows us to apply Theo-

rem 2.9, which finishes the proof of Theorem 3.1.

Our next goal is to prove that the semigroup generated by ∂
∂x
Dα can be extended to an

analytic semigroup on a sector of complex plane. Before we will prove that result, we need
to formulate two auxiliary lemmas. A similar reasoning to the one carried in Lemma 3.3
may be found in [10, Lemma 6].

Lemma 3.3. The formulas
∥∥∥D 1+α

2 u
∥∥∥
L2(0,1)

and ‖u‖
H

1+α
2 (0,1)

define equivalent norms
on Dα.

Proof. We denote by cα a generic constant dependent only on α. Firstly, we will show
that there exists cα such that∥∥∥D 1+α

2 u
∥∥∥
L2(0,1)

≤ cα ‖u‖
H

1+α
2 (0,1)

.

Using formula (2.15) and Proposition 2.35 we may write∥∥∥D 1+α
2 u

∥∥∥
L2(0,1)

=
∥∥∥I 1−α

2 ux
∥∥∥
L2(0,1)

≤ cα ‖ux‖
H
α−1

2 (0,1)
.

Due to Remark 2.2 we know that ∂
∂x

is a bounded and linear operator from Hs(0, 1) to
Hs−1(0, 1) for s ∈ [0, 1] \ {1

2} thus∥∥∥D 1+α
2 u

∥∥∥
L2(0,1)

≤ cα ‖u‖
H
α+1

2 (0,1)
.

To show the opposite inequality we notice that since u ∈ Dα we have

u(x) = −
∫ 1

x
ux(s)ds = −I

1+α
2
− I

1−α
2
− ux(x),
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where we applied Proposition 2.22 to right-side fractional integral defined in Definition 2.20.
Thus, by Proposition 2.32 we may estimate

‖u‖
H
α+1

2 (0,1)
=
∥∥∥∥I 1+α

2
− I

1−α
2
− ux

∥∥∥∥
0H

α+1
2 (0,1)

≤ cα

∥∥∥∥I 1−α
2
− ux

∥∥∥∥
L2(0,1)

.

Applying Proposition 2.35 and Proposition 2.36 we may estimate further

‖u‖
H
α+1

2 (0,1)
≤ cα ‖ux‖

H
α−1

2 (0,1)
= cα

∥∥∥∂ 1−α
2 I

1−α
2 ux

∥∥∥
H
α−1

2 (0,1)

≤ cα
∥∥∥I 1−α

2 ux
∥∥∥
L2(0,1)

= cα
∥∥∥D 1+α

2 u
∥∥∥
L2(0,1)

,

which finishes the proof.

Lemma 3.4. For u ∈ Dα we have

Re(− ∂

∂x
Dαu, u) ≥ cα ‖u‖2

H
1+α

2 (0,1)
(3.12)

and ∣∣∣∣∣(− ∂

∂x
Dαu, u)

∣∣∣∣∣ ≤ bα ‖u‖2
H

1+α
2 (0,1)

, (3.13)

where cα, bα are positive constant which depends only on α.

Proof. We have already obtained in (3.4) that

Re
(
− ∂

∂x
Dαu, u

)
≥ cα

∥∥∥D 1+α
2 u

∥∥∥2

L2(0,1)
.

Hence, in order to prove (3.12) it is enough to apply the norm equivalence from Lemma 3.3.
Now, we will prove (3.13). In fact, we will show something more, i. e. there exists bα > 0
such that for every u ∈ Dα and every w ∈ AC[0, 1] ∩ 0H

1+α
2 (0, 1) there holds∣∣∣∣∣(− ∂

∂x
Dαu,w)

∣∣∣∣∣ ≤ bα ‖u‖
H

1+α
2 (0,1)

‖w‖
0H

1+α
2 (0,1)

. (3.14)

At first, we notice that since u ∈ Dα, we know that ux ∈ 0H
α(0, 1) and from Corollary 2.33

we infer that Dαu = I1−αux ∈ 0H
1(0, 1). Applying Remark 2.7 in the first identity below

and Proposition 2.30 in the second one, we may write
∂

∂x
Dαu = ∂

1+α
2 ∂

1−α
2 Dαu = ∂

1+α
2 D

1+α
2 u = ∂

∂x
I

1−α
2 D

1+α
2 u.

We integrate by parts and make use of w(1) = 0, (Dαu)(0) = 0, the identity (2.23) and
Definition 2.20 to get

( ∂
∂x
Dαu,w) =

∫ 1

0

∂

∂x
I

1−α
2 D

1+α
2 u ·wdx = −

∫ 1

0
I

1−α
2 D

1+α
2 u ·wxdx =

∫ 1

0
D

1+α
2 u ·D

1+α
2
− wdx.

(3.15)
Thus,∣∣∣∣∣(− ∂

∂x
Dαu,w)

∣∣∣∣∣ =
∣∣∣∣∫ 1

0
D

1+α
2 u ·D

1+α
2
− wdx

∣∣∣∣ ≤ ∥∥∥D 1+α
2 u

∥∥∥
L2(0,1)

∥∥∥∥D 1+α
2
− w

∥∥∥∥
L2(0,1)

. (3.16)

Since w(1) = 0, applying Proposition 2.32 we obtain that∥∥∥∥D 1+α
2
− w

∥∥∥∥
L2(0,1)

=
∥∥∥∥∂ 1+α

2
− w

∥∥∥∥
L2(0,1)

≤ bα ‖w‖0H
1+α

2 (0,1)
= bα ‖w‖

H
1+α

2 (0,1)
,

where by bα we denote a positive constant dependent on α. Making use of this estimate
and the norm equivalence from Lemma 3.3 in (3.16) we obtain (3.14). Putting w = u we
arrive at estimate (3.13).
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Finally, we are ready to prove the main theorem.

Theorem 3.5. The operator ∂
∂x
Dα : Dα ⊆ L2(0, 1)→ L2(0, 1) is densely defined sectorial

operator, thus it generates an analytic semigroup.

Proof. We will give the proof of analyticity following the proof of [23, Ch. 7, Theorem 2.7],
where the elliptic operators are studied.
At first, we notice that since L2(0, 1) is a Hilbert space, the numerical range of − ∂

∂x
Dα

(see Proposition 2.10) equals

S(− ∂

∂x
Dα) =

{(
u,− ∂

∂x
Dαu

)
: u ∈ Dα, ‖u‖L2(0,1) = 1

}
.

Indeed, let us assume that there exists w ∈ L2(0, 1) such that ‖w‖L2(0,1) = 1 and (w, u) = 1
for u such that ‖u‖L2(0,1) = 1. Then

‖w − u‖2
L2(0,1) = ‖w‖2

L2(0,1) − 2 Re(w, u) + ‖u‖2
L2(0,1) = 0,

hence w = u. We note that by (3.12) zero does not belong to S(− ∂
∂x
Dα). Let us denote

z =
(
u,− ∂

∂x
Dαu

)
. Then, in view of (3.12) and (3.13), we obtain that

|tan(arg z)| =
∣∣∣∣∣Im z

Re z

∣∣∣∣∣ ≤ bα
cα
,

which implies

S(− ∂

∂x
Dα) ⊆

{
λ ∈ C \ {0} : |arg λ| ≤ arctan

(
bα
cα

)}
and arctan( bα

cα
) < π

2 . We may choose ν such that arctan( bα
cα

) < ν < π
2 and denote

Σν := {λ : λ 6= 0, |arg λ| > ν}. Then, Σν ⊆ C \ S(− ∂
∂x
Dα). We will show that there

exists a positive constant cν such that

d(λ, S(− ∂

∂x
Dα)) ≥ cν |λ| for all λ ∈ Σν . (3.17)

Indeed, in the case when λ ∈ Σν is such that |arg λ| > π
2 + arctan( bα

cα
) we obtain that

d(λ, S(− ∂
∂x
Dα)) ≥ |λ|. If we assume that ν < arg λ ≤ π

2 + arctan( bα
cα

) we arrive at
d(λ, S(− ∂

∂x
Dα))

|λ|
≥ sin(arg λ− arctan(bα

cα
)) ≥ sin(ν − arctan(bα

cα
)).

Finally, if −π
2 − arctan( bα

cα
) ≤ arg λ < −ν we get that

d(λ, S(− ∂
∂x
Dα))

|λ|
≥
∣∣∣∣∣sin(arg λ+ arctan(bα

cα
))
∣∣∣∣∣ ≥

∣∣∣∣∣sin(−ν + arctan(bα
cα

))
∣∣∣∣∣

and we obtain (3.17). By Theorem 3.1 we know that (−∞, 0] ⊆ ρ(− ∂
∂x
Dα), which implies

that
Σν ∩ ρ(− ∂

∂x
Dα) 6= ∅.

We may apply Proposition 2.10 to the operator − ∂
∂x
Dα to obtain that spectrum of − ∂

∂x
Dα

is contained in C \ Σν , which means that Σν ⊆ ρ(− ∂
∂x
Dα) and∥∥∥∥∥∥

(
λE − (− ∂

∂x
Dα)

)−1
∥∥∥∥∥∥ ≤ 1

d(λ, S( ∂
∂x
Dα))

≤ 1
cν |λ|

for all λ ∈ Σν .
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Thus, the set {λ ∈ C : |arg λ| < π − ν} ∪ {0} ⊆ ρ( ∂
∂x
Dα) and∥∥∥∥∥∥

(
λE − ∂

∂x
Dα

)−1
∥∥∥∥∥∥ ≤ 1

cν |λ|
for every λ ∈ C \ {0} : |arg λ| < π − ν.

Hence, we showed that ∂
∂x
Dα is sectorial and the semigroup generated by ∂

∂x
Dα can be

extended to the analytic semigroup on a sector of complex plane.

We finish this section with a simple application of obtained results.

Theorem 3.6. Let us consider problem (3.3) with f ≡ 0. If we assume that u0 ∈
L2(0, 1), then there exists exactly one solution to (3.3) which belongs to C([0, T ];L2(0, 1))∩
C((0, T ];Dα) ∩ C1((0, T ];L2(0, 1)). Furthermore, there exists a positive constant c = c(T ),
such that the following estimate holds for every t ∈ (0, T ]

‖u(·, t)‖L2(0,1) + t ‖ut(·, t)‖L2(0,1) + t

∥∥∥∥∥ ∂∂xDαu(·, t)
∥∥∥∥∥
L2(0,1)

≤ c ‖u0‖L2(0,1) .

Nevertheless, u ∈ C∞((0, T ];L2(0, 1)) and for every t ∈ (0, T ], for very k ∈ N we have
u(·, t) ∈ D(( ∂

∂x
Dα)k). The last property implies that u(·, t) ∈ C∞(0, 1) for every t ∈ (0, T ],

however u has a singularity of the form xα+1 at the left endpoint of the interval.

Proof. Since, we know that the operator ∂
∂x
Dα generates an analytic semigroup, we may

apply to (3.3) the general semigroup theory. Then, in view of Theorem 2.11, it remains to
describe how a domain of k -th power of ∂

∂x
Dα looks like. Let us focus on k = 2. Then,

u ∈ D(( ∂
∂x
Dα)2) if u ∈ Dα and ∂

∂x
Dαu ∈ Dα. Applying Proposition 2.32 we obtain that

ux = Iα∂αux = Iα(∂αux − (∂αux)(0)) + (∂αux)(0)Iα1.

We integrate this identity and apply Proposition 2.22 and Example 2.2

u(x) = u(0) + I1+α(∂αux − (∂αux)(0)) + (∂αux)(0) xα+1

Γ(2 + α) .

By the assumption and identity (3.1) there holds ∂αux − (∂αux)(0) ∈ 0H
1+α(0, 1). Hence,

by Corollary 2.33 we obtain that I1+α(∂αux − (∂αux)(0)) belongs to 0H
2(1+α)(0, 1). In the

case u ∈ D(( ∂
∂x
Dα)k) we iterate the above procedure and we arrive at

u(x) =
k∑

n=0
(( ∂
∂x
Dα)nu)(0) xn(1+α)

Γ(1 + n(1 + α)) + Ik(1+α)(( ∂
∂x
Dα)ku− (( ∂

∂x
Dα)ku)(0)).

By Corollary 2.33 the last component belongs to 0H
(1+α)(k+1)(0, 1) and we note that

function u has a singularity of the form xα+1 at the origin. By Theorem 2.11 a solution to
(3.3) belongs to ⋂∞k=1D(( ∂

∂x
Dα)k), thus we obtained the claim.

Remark 3.1. One may consider the problem (3.3) with nonzero right-hand-side. Then the
solution is obtained by the variation of constant formula, see for example Theorem 2.12.

Remark 3.2. The result of Theorem 3.5 may be extended to the case of operator ∂
∂x
p(x)Dα:

Dα → L2(0, 1), where p ∈ W 1,∞(0, 1) is positive and separated away from zero. The proof
may be found in [27], however, we skip the proof here, since it is technical.
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Let us show another possible generalization of this problem.

Theorem 3.7. Let us consider the operator A : Dα ⊆ L2(0, 1)→ L2(0, 1) defined by

Au = ∂

∂x
Dαu+

∫ β

0
µ(γ) ∂

∂x
Dγudγ,

where 0 < β < α < 1 and

µ(γ) =
M∑
k=1

qkδ(· − γk) + ω(γ).

We assume that M ∈ N, qk ≥ 0 for k = 1, . . . ,M , γk ∈ (0, β] for k = 1, . . . ,M and
ω ∈ L1(0, β), ω ≥ 0. Then, A : Dα ⊆ L2(0, 1)→ L2(0, 1) is sectorial, hence it generates
an analytic semigroup.

Proof. In order to prove the theorem we will apply Proposition 2.14. Let us consider
the operator B : Dβ → L2(0, 1), defined by Bu :=

∫ β
0 µ(γ) ∂

∂x
Dγudγ. We recall that the

definition of space Dβ was given in (3.2). Let us justify the definition of operator B. At
first, we will show that for 0 < γ < β and u ∈ Dβ function γ 7→ µ(γ) ∂

∂x
Dγu is measurable

with values in L2(0, 1). Indeed, applying identity (3.1) and Theorem 2.7 we obtain that for
u ∈ Dβ there holds ∂

∂x
Dγu = ∂γux = Iβ−γ∂βux. Applying Proposition 2.3 together with

Definition 2.6 we obtain that the function γ 7→ Iβ−γ∂βux is continuous on [0, β] with values
in L2(0, 1). Thus, for 0 < γ < β and u ∈ Dβ function γ 7→ µ(γ) ∂

∂x
Dγu is measurable with

values in L2(0, 1). We note that for u ∈ Dβ

‖Bu‖L2(0,1) ≤
∫ β

0
µ(γ)

∥∥∥∥∥ ∂∂xDγu

∥∥∥∥∥
L2(0,1)

dγ =
∫ β

0
µ(γ) ‖∂γux‖L2(0,1) dγ.

Applying Proposition 2.4 we obtain that there exists c > 0 (independent on γ and β) such
that for every γ ∈ (0, β)

‖∂γux‖L2(0,1) ≤ c
∥∥∥∂βux∥∥∥ γβ

L2(0,1)
‖ux‖

β−γ
β

L2(0,1) .

Hence, we may estimate further

‖∂γux‖L2(0,1) ≤ c(β) ‖u‖
γ
β

Dβ ‖u‖
β−γ
β

Dβ = c(β) ‖u‖Dβ
and

‖Bu‖L2(0,1) ≤ c(β) ‖u‖Dβ
∫ β

0
µ(γ)dγ = c(β, µ) ‖u‖Dβ .

Thus, B ∈ B(Dβ, L2(0, 1)). We note that in our case we may show more direct estimate
without the use of Proposition 2.4. Indeed, recalling that for every f ∈ L2(0, 1) and every
α > 0 there holds ‖Iαf‖L2(0,1) ≤

1
Γ(α+1) ‖f‖L2(0,1) we may write

‖∂γux‖L2(0,1) =
∥∥∥Iβ−γ∂βux∥∥∥

L2(0,1)
≤ 1

Γ(1 + β − γ)
∥∥∥∂βux∥∥∥

L2(0,1)
≤ 2 ‖u‖Dβ ,

where in the last inequality we used the fact that Γ(·) > 1
2 on [1, 2].

Furthermore, Dα ⊆ Dβ ⊆ L2(0, 1) and for every u ∈ Dα we have

‖u‖Dβ ≤ c ‖ux‖0Hβ(0,1) ≤ c(α, β) ‖ux‖
β
α

0Hα(0,1) ‖ux‖
1− β

α

L2(0,1) ≤ c(α, β) ‖u‖
β
α
Dα ‖ux‖

1− β
α

L2(0,1) ,
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where in the first estimate we applied the Poincaré inequality, while in the second one
we applied interpolation estimate ([19, Corollary 1.2.7.]). Applying again ([19, Corollary
1.2.7.]) we may write

‖ux‖L2(0,1) ≤ ‖u‖H1(0,1) ≤ c(α) ‖u‖
α
α+1
L2(0,1) ‖u‖

1
α+1
H1+α(0,1) ≤ c(α) ‖u‖

α
α+1
L2(0,1) ‖u‖

1
α+1
Dα .

Together we obtain that

‖u‖Dβ ≤ c(α, β) ‖u‖
α−β
α+1
L2(0,1) ‖u‖

1+β
α+1
Dα .

Hence, the claim follows from Proposition 2.14.

3.2. Case with Dirichlet boundary conditions

In this section we will consider the problem with Dirichlet boundary conditions.


ut − ∂

∂x
Dαu = f in (0, 1)× (0, T ),

u(0, t) = 0, u(1, t) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) in (0, 1),

(3.18)

To this end, we have to redefine the domain of ∂
∂x
Dα. Let us introduce

D̄α := {u = w − w(1)xα, where w ∈ 0H
1+α(0, 1)}.

From Example 2.3 we infer that xα /∈ 0H
1+α(0, 1). Thus, for every u ∈ D̄α the function w

is uniquely determined. Indeed, if we assume that there exist w1, w2 ∈ 0H
1+α(0, 1) such

that w1 − w1(1)xα = w2 − w2(1)xα, then w1(1) = w2(1) and w1 = w2 in 0H
1+α(0, 1). We

equip D̄α with the following norm

‖u‖D̄α = ‖w‖H1+α(0,1) for α ∈ (0, 1) \ {1
2}

and

‖u‖D̄α =
(
‖w‖2

H
3
2 (0,1)

+
∫ 1

0

|wx(x)|2

x
dx

) 1
2

for α = 1
2 .

By identity (3.1) and Example 2.3 we may easily calculate ∂
∂x
Dαxα = 0. Thus,

∂

∂x
Dα : D̄α → L2(0, 1).

Moreover D̄α is dense in L2(0, 1), because C∞0 (0, 1) ⊆ D̄α. We will show that ∂
∂x
Dα defined

on D̄α is also a generator of analytic semigroup on L2(0, 1). The strategy of the proof is
as follows. We will prove Lemma 3.2 and Lemma 3.4 for ∂

∂x
Dα defined on D̄α and then we

will repeat the proof of Theorem 3.5 to obtain the claim. We will begin with the analysis
of the resolvent.

Lemma 3.8. Let us discuss ∂
∂x
Dα : D̄α → L2(0, 1). Then, for every λ ∈ C belonging to

the sector
ϑα := {z ∈ C \ {0} : |arg z| ≤ π(α + 1)

2 } ∪ {0} (3.19)
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there holds
R(λE − ∂

∂x
Dα) = L2(0, 1).

Proof. To prove the lemma we fix g ∈ L2(0, 1) and λ belonging to ϑα. We must prove that
there exists u ∈ D̄α such that

λu− ∂

∂x
Dαu = g. (3.20)

We will proceed as in the proof of Lemma 3.2. We note that if we search for a solution
in D̄α, then it can be represented in the form u = w − w(1)xα and, by Example 2.1,
Dαu = Dαw − w(1)Γ(α + 1). Since w ∈ 0H

1+α(0, 1), we have Dαw ∈ 0H
1(0, 1) and hence

Dαu(0) = −w(1)Γ(α+ 1). At first we will solve the equation (3.20) with initial conditions
u(0) = 0 and Dαu(0) = a for arbitrary a ∈ C and then we will choose a such that u(1) = 0.
At first, let us transform the equation (3.20) into integral form. To this end we assume that
u which may be written in the form u = w+ a

Γ(1+α)x
α where w ∈ 0H

1+α(0, 1), solves (3.20).
Then, having integrated (3.20) we obtain that

Dαu = (Dαu)(0) + λIu− Ig = a+ λIu− Ig.

Applying Iα we get
u = aIα1 + λIα+1u− Iα+1g. (3.21)

We note that if we search for a solution such that there exists w ∈ 0H
1+α(0, 1), such that

u = w + a
Γ(1+α)x

α, then equation (3.20) is equivalent with (3.21). Indeed, it follows from
Proposition 2.32 together with Example 2.2.
We apply the operator Iα+1 to (3.21) and we obtain

u = aIα1− Iα+1g + λaI2α+11 + λ2I2(α+1)u− λI2(α+1)g.

Iterating this procedure n times we arrive at

u = a
n∑
k=0

λkIα+k(α+1)1−
n∑
k=0

λkI(k+1)(α+1)g + λn+1I(n+1)(α+1)u. (3.22)

We will show, that the last expression tends to zero as n→∞. Indeed, we may note that,
since 0H

1+α(0, 1) ⊆ L∞(0, 1) and due to the presence of the Γ-function in the denominator
we have∣∣∣λn(In(α+1)u)(x)

∣∣∣ ≤ ‖u‖L∞(0,1)
|λ|n x(α+1)n

Γ((α + 1)n+ 1) ≤
‖u‖L∞(0,1) |λ|

n

Γ((α + 1)n+ 1) → 0 as n→∞

for each λ ∈ C uniformly with respect to x ∈ [0, 1]. Thus, passing to the limit with n in
(3.22) we obtain the formula

u = a
∞∑
k=0

λkIα+k(α+1)1−
∞∑
k=0

λkI(k+1)(α+1)g. (3.23)

We have already proven in the proof of Lemma 3.2 that the second series is uniformly
convergent and

∞∑
k=0

λkI(k+1)(α+1)g = g ∗ xαEα+1,α+1(λxα+1).
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The sum of the first series may be easily calculated. Indeed, from Example 2.2 we have

Iα+k(α+1)1 = xα+k(α+1)

Γ(1 + α + k(α + 1)) ,

hence
∞∑
k=0

λkIα+k(α+1)1 = xαEα+1,α+1(λxα+1).

Together, we obtain that function u given by (3.23) may be equivalently written as

u(x) = axαEα+1,α+1(λxα+1)− g ∗ xαEα+1,α+1(λxα+1). (3.24)

We may check that u given by the formula (3.24) is a solution to (3.21) and (3.20) with
boundary conditions u(0) = 0 and Dαu(0) = a by a similar calculation as the one carried
in the proof of Lemma 3.2. It remains to choose the value a in such a way that u(1) = 0.
For this purpose, we take x = 1 in (3.24) and we obtain

u(1) = aEα+1,α+1(λ)− (g ∗ yαEα+1,α+1(λyα+1))(1).

To obtain that u(1) = 0 we choose

a = Eα+1,α+1(λ))−1(g ∗ yαEα+1,α+1(λyα+1))(1).

We note that a is well defined because, taking ν = µ = α + 1 in Proposition 2.27, we
obtain that Eα+1,α+1(λ) 6= 0 for λ belonging to the sector ϑ. Summing up the results we
obtain that there exists a solution to (3.20) which belongs to D̄α and it is represented by
the formula

u(x) = (g ∗ yαEα+1,α+1(λyα+1))(1)
Eα+1,α+1(λ) xαEα+1,α+1(λxα+1)− g ∗ xαEα+1,α+1(λxα+1).

We note that here function w from the definition of D̄α is given by

w(x) = (g ∗ yαEα+1,α+1(λyα+1))(1)
Eα+1,α+1(λ) xα

∞∑
n=1

λnx(α+1)n

Γ((α + 1)n+ α + 1) − g ∗ x
αEα+1,α+1(λxα+1).

In this way we proved the lemma.

Our next aim is to prove the following.

Lemma 3.9. For u ∈ D̄α we have

Re(− ∂

∂x
Dαu, u) ≥ cα ‖u‖2

H
1+α

2 (0,1)
(3.25)

and ∣∣∣∣∣(− ∂

∂x
Dαu, u)

∣∣∣∣∣ ≤ bα ‖u‖2
H

1+α
2 (0,1)

, (3.26)

where cα, bα are positive constants which depends only on α.

Proof. At first we will prove (3.25). We fix u ∈ D̄α. Since u(0) = u(1) = 0, we may
integrate by parts to obtain

Re
(
− ∂

∂x
Dαu, u

)
= −Re

∫ 1

0
( ∂
∂x
Dαu)(x) · u(x)dx

=
∫ 1

0
Dα Reu(x) · ∂

∂x
Reu(x)dx+

∫ 1

0
Dα Im u(x) · ∂

∂x
Im u(x)dx.
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We note that D̄α ⊆ AC[0, 1] hence we may apply Proposition 2.30 and we get

Re
(
− ∂

∂x
Dαu, u

)
=
∫ 1

0
Dα Reu(x)·∂1−αDα Reu(x)dx+

∫ 1

0
Dα Im u(x)·∂1−αDα Im u(x)dx.

By the definition of D̄α we know that Dαu ∈ AC[0, 1], hence we are allowed to apply
inequality (2.19) with w = Dα Reu and w = Dα Im u to obtain

Re
(
− ∂

∂x
Dαu, u

)
≥ cα ‖Dαu‖2

H
1−α

2 (0,1)
≥ cα

∥∥∥∂ 1−α
2 Dαu

∥∥∥2

L2(0,1)

= cα
∥∥∥D 1+α

2 u
∥∥∥2

L2(0,1)
= cα

∥∥∥∂ 1+α
2 u

∥∥∥2

L2(0,1)
≥ cα ‖u‖

H
1+α

2 (0,1)
.

Here in the second inequality we used Proposition 2.32, the first equality follows from
Proposition 2.30, the second equality is a consequence of the fact that u vanishes at zero
and the last inequality comes from Proposition 2.32. It remains to show (3.26). We make
use of Remark 2.7, Definition 2.18 and Proposition 2.30 to arrive at the following sequence
of identities

∂

∂x
Dαu = ∂

1+α
2 ∂

1−α
2 Dαu = ∂

∂x
I

1−α
2 D

1+α
2 u.

Then, we apply integration by parts formula and identity (2.23) to get∫ 1

0

∂

∂x
Dαu · ūdx = −

∫ 1

0
I

1−α
2 D

1+α
2 u · ūxdx = −

∫ 1

0
D

1+α
2 u · I

1−α
2
− ūxdx.

We note that the boundary terms in integration by parts formula vanish due to u(0) =
u(1) = 0. Finally, we get∣∣∣∣∣

∫ 1

0

∂

∂x
Dαu · ūdx

∣∣∣∣∣ ≤ ∥∥∥D 1+α
2 u

∥∥∥
L2(0,1)

∥∥∥∥D 1+α
2
− ū

∥∥∥∥
L2(0,1)

=
∥∥∥∂ 1+α

2 u
∥∥∥
L2(0,1)

∥∥∥∥∂ 1+α
2
− ū

∥∥∥∥
L2(0,1)

≤ bα ‖u‖2
H

1+α
2
.

We note that here we again used the fact that u vanishes at the boundary and we applied
Proposition 2.32.

Now we are able to state the result.

Theorem 3.10. The operator ∂
∂x
Dα : D̄α ⊆ L2(0, 1) → L2(0, 1) is a densely defined

sectorial operator, thus it generates an analytic semigroup.

Proof. Once we established Lemma 3.8 and Lemma 3.9, the argument is identical as in
the proof of Theorem 3.5.

Remark 3.3. Theorem 3.10 allows us to apply Theorem 2.11 to obtain existence and
regularity results for a solution to (3.18) with f ≡ 0. We note, that in this case, the
solution has a singularity at the left endpoint of the interval of the form xα. Hence, in
general the solution to this problem is less regular then in the case of boundary condition
ux(0, t) = 0.

57



CHAPTER 3. OPERATOR ∂
∂XDα AS A GENERATOR OF AN ANALYTIC SEMIGROUP

3.2.1. Non-homogenous boundary conditions

We finish this section with a remark about the case with non-homogenous boundary
conditions. Let us discuss

ut − ∂
∂x
Dαu = f in (0, 1)× (0, T ),

u(0, t) = g(t), u(1, t) = h(t) for t ∈ (0, T ),
u(x, 0) = u0(x) in (0, 1),

(3.27)

where g, h ∈ C1,ν [0, T ] and f ∈ C0,ν([0, T ];L2(0, 1)) for a 0 < ν < 1. Then we may define

v(x, t) := u(x, t)− g(t)η(x)− h(t)ϕ(x), (3.28)

where η and ϕ are smooth functions such that η ≡ 1, ϕ ≡ 0 near the left endpoint of the
interval and η ≡ 0, ϕ ≡ 1 near the right endpoint of the interval. We rewrite the system
(3.27) in terms of function v

vt − ∂
∂x
Dαv = f̄ in (0, 1)× (0, T ),

v(0, t) = 0, v(1, t) = 0 for t ∈ (0, T ),
v(x, 0) = v0(x) in (0, 1),

(3.29)

where
f̄ = f − g′(t)η(x)− h′(t)ϕ(x) + g(t) ∂

∂x
Dαη(x) + h(t) ∂

∂x
Dαϕ(x)

and
v0(x) = u0(x)− g(0)η(x)− h(0)ϕ(x).

We note that ϕx, ηx ∈ 0H
α(0, 1), hence ∂

∂x
Dαϕ ∈ L2(0, 1) and ∂

∂x
Dαϕ ∈ L2(0, 1). Thus, we

may apply the standard theory of analytic semigroups to obtain existence and regularity
results for this problem. For instance, since f̄ ∈ C0,ν([0, T ];L2(0, 1)) we may apply
Theorem 2.12 to obtain basic result concerning the existence of the solution to (3.29).
Then, we recover the solution to (3.27) from identity (3.28).

3.3. Case with prescribed flux on the left boundary

In this section we will consider the problem with prescribed nonlocal flux on the left
boundary, i.e. 

ut − ∂
∂x
Dαu = f in (0, 1)× (0, T ),

(Dαu)(0, t) = h(t), u(1, t) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) in (0, 1).

(3.30)

We note that the condition on (Dαu)(0) is connected with regularity of function u.
Indeed, we have the following.

Lemma 3.11. Let F be an absolutely continuous function and f := F ′. Then we denote

(DαF )(0) := lim
x→0

1
Γ(1− α)

∫ x

0
(x− p)−αf(p)dp.
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1. If (DαF )(0) exists and (DαF )(0) = c, then limy→0
F (y)
yα

= c
Γ(1+α) ,

2. if the limit limy→0
f(y)
yα−1 exists and limy→0

f(y)
yα−1 = c

Γ(α) , then (DαF )(0) = c.

Proof. Let us firstly assume that

lim
x→0

1
Γ(1− α)

∫ x

0
(x− p)−αf(p)dp = c.

We fix ε > 0. Then, there exists x0 > 0 such that for every 0 ≤ y < x0 there holds

c− ε ≤ 1
Γ(1− α)

∫ y

0
(y − p)−αf(p)dp ≤ ε+ c.

We apply Iα to these inequalities. By Example 2.2 and Proposition 2.22 we get

(c− ε) yα

Γ(1 + α) ≤ F (y) ≤ (c+ ε) yα

Γ(1 + α) for every y < x0,

which is equivalent with∣∣∣∣∣Γ(1 + α)F (y)
yα
− c

∣∣∣∣∣ ≤ ε for every y < x0.

Hence, limy→0
F (y)
yα

= c
Γ(1+α) . Now, we assume that limy→0

f(y)
yα−1 = c

Γ(α) . Then, we obtain
that for any fixed ε > 0, there exists x0 > 0 such that for all 0 < y < x0

( c

Γ(α) − ε)y
α−1 ≤ f(y) ≤ ( c

Γ(α) + ε)yα−1.

Applying I1−α to the inequalities above we obtain for every 0 < y < x0 that

c− εΓ(α) ≤ (I1−αf)(y) ≤ c+ εΓ(α),

where we made use of Example 2.1. Since ε > 0 is arbitrary we obtain the claim.

In view of Lemma 3.11 it is natural to search for a solution to (3.30) in the form

u = h(t)
Γ(1 + α)x

α + v, vx ∈ 0H
α(0, 1). (3.31)

Then, we may rewrite problem (3.30) in terms of function v. Namely,
vt − ∂

∂x
Dαv = f − h′(t)

Γ(1+α)x
α in (0, 1)× (0, T ),

vx ∈ 0H
α(0, 1), v(1, t) = − h(t)

Γ(1+α) for t ∈ (0, T ),
v(x, 0) = u0(x)− h(0)

Γ(1+α)x
α in (0, 1).

(3.32)

Then, we introduce
w(x, t) = v(x, t) + h(t)

Γ(1 + α)ϕ(x), (3.33)

where ϕ is a smooth function such that ϕ ≡ 0 near the left endpoint of the interval and
ϕ ≡ 1 near the right endpoint of the interval. We may rewrite system (3.32) in terms of
function w, i.e. 

wt − ∂
∂x
Dαw = f̄ in (0, 1)× (0, T ),

wx ∈ 0H
α(0, 1), w(1, t) = 0 for t ∈ (0, T ),

w(x, 0) = w0(x) in (0, 1),
(3.34)

where
f̄ = f − h′(t)

Γ(1 + α)(xα − ϕ(x))− h(t)
Γ(1 + α)

∂

∂x
Dαϕ,
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w0(x) = u0(x) + h(0)
Γ(1 + α)(ϕ(x)− xα).

In order to solve (3.34) we may apply Theorem 3.5 and the standard theory of analytic
semigroups. For example, assuming f ∈ C0,ν(0, T ;L2(0, 1)), h ∈ C1,ν([0, T ]), u0 ∈ L2(0, 1),
we may apply Theorem 2.12. Then, we can recover a solution to (3.30) from the identities
(3.31) and (3.33). We summarize the obtained result in the following theorem.

Theorem 3.12. Let us assume that f ∈ C0,ν(0, T ;L2(0, 1)), h ∈ C1,ν([0, T ]) and u0 ∈
L2(0, 1). Then there exists a solution to (3.30) such that for every t ∈ (0, T ] the equation
(3.30)1 is satisfied in L2(0, 1) and there hold u(1, t) = 0, (Dαu)(0, t) = h(t). Furthermore,
u ∈ C([0, T ];L2(0, 1)) ∩ C1((0, T ];L2(0, 1)) and for every ε > 0 u ∈ C((0, T ];H1+α(ε, 1)).

3.4. Case with less regular source term

3.4.1. Motivation

Studying the results from previous sections, we may infer, that one may pass from the
problem with non-homogenous Dirichlet boundary conditions to the homogenous problem
rather painless. Indeed, it is enough to use an appropriate auxiliary function and transform
the problem to the one with the source term that is square integrable with respect to
space variable. However, we note that the situation appears to be different if we deal with
the problem with non-homogenous Neumann condition

ut − ∂
∂x
Dαu = 0 in (0, 1)× (0, T ),

ux(0, t) = h(t), u(1, t) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) in (0, 1).

(3.35)

We would like to somehow transform this problem to (3.3). To this end, we fix a smooth
function ρ such that ρ′(0) = 1, ρ(1) = 0 and we introduce an auxiliary function v as follows

v(x, t) = u(x, t)− h(t)ρ(x). (3.36)

Then, applying identity (3.1) and Remark 2.6 we obtain
∂

∂x
Dαρ = ∂αρx = Dαρx + x−α

Γ(1− α) .

Hence, our problem may be reduced to
vt − ∂

∂x
Dαv = −h′(t)ρ+ h(t)Dαρx + h(t)

Γ(1−α)x
−α in (0, 1)× (0, T ),

vx(0, t) = 0, v(1, t) = 0 for t ∈ (0, T ),
v(x, 0) = u0(x)− h(0)ρ(x) =: v0(x) in (0, 1).

(3.37)

60



3.4. CASE WITH LESS REGULAR SOURCE TERM

We note that the last component of the source function has a singularity and in the case
of α ∈ [1

2 , 1) the singularity is not square integrable. Hence, we are not allowed to use
already obtained results. This motivates us to investigate the problem (3.3) with f that
does not belong to L2(0, 1). Although the analytic semigroup theory is a powerful tool in
the theory of existence and regularity of solutions to parabolic type problems, it is not
very flexible. That is way, here we would like to present a different approach, based on
energy estimates. We will find weak solutions to the problem (3.3) with rough regularity
of the source term, thus in the case when we are not able to apply directly the semigroup
theory.

3.4.2. Energy method

Our goal is to solve the following problem
vt − ∂

∂x
Dαv = f in (0, 1)× (0, T ),

vx ∈ 0H
α(0, 1), v(1, t) = 0 for t ∈ (0, T ),

v(x, 0) = v0(x) in (0, 1),
(3.38)

where f ∈ L2(0, T ;L1(0, 1)). We will solve this problem by approximation. Let us take a
sequence f ε ∈ C1([0, T ];Dα) such that f ε → f in L2(0, T ;L1(0, 1)). Let us show that such
sequence exists. There exists a sequence of simple functions sk = ∑k

n=0 χEn(t)gn, where
gn ∈ L1(0, 1) and En are measurable subsets of (0, T ), such that sk → f in L2(0, T ;L1(0, 1)).
We define a sequence fk,m,δ as follows

fk,m,δ(x, t) =
k∑

n=0
ηδ ∗ χEn(t)gmn ,

where ηδ denotes a standard mollifier and {gmn } ⊆ C∞0 (0, 1) is such that for every n we
have gmn → gn as m→∞ in L1(0, 1). Then fk,m,δ ∈ C∞([0, T ];C∞0 (0, 1)) and fk,m,δ → f

in L2(0, T ;L1(0, 1)) as m → ∞, k → ∞ and δ → 0. Let us assume that v0 ∈ L2(0, 1).
By Theorem 2.12 and Theorem 3.5 we obtain that there exists exactly one solution to
approximate problem

vεt − ∂
∂x
Dαvε = f ε in (0, 1)× (0, T ),

vεx ∈ 0H
α(0, 1), vε(1, t) = 0 for t ∈ (0, T ),

vε(x, 0) = v0(x) in (0, 1),
(3.39)

which belongs to C([0, T ];L2(0, 1)) ∩ C((0, T ];Dα) ∩ C1((0, T ];L2(0, 1)). Let us denote by
T (t) the analytic semigroup generated by ∂

∂x
Dα given by Theorem 3.5. Then, the solution

to (3.39) is given by the formula

vε(x, t) = T (t)v0(x) +
∫ t

0
T (t− τ)f ε(x, τ)dτ.

We note that the interpolation space between L2 and Dα is characterized as follows

[L2(0, 1),Dα]θ =
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=


0H(1+α)θ(0, 1) if θ ∈ (0,min{1, 3

2(1+α)}),
{u ∈ H(1+α)θ(0, 1) : u(1) = 0, ux ∈ 0H

(1+α)θ−1(0, 1)} if θ ∈ [min{1, 3
2(1+α)}, 1].

(3.40)
For clarity, let us describe how the interpolation space looks like in dependence of α and θ.

[L2(0, 1),Dα]θ =

=



H(1+α)θ(0, 1) if θ ∈ (0, 1
2(1+α)), α ∈ (0, 1),

0H
1
2 (0, 1) if θ = 1

2(1+α) , α ∈ (0, 1),
{u ∈ H(1+α)θ(0, 1) : u(1) = 0} if θ ∈ ( 1

2(1+α) , 1), α ∈ (0, 1
2 ],

{u ∈ H(1+α)θ(0, 1) : u(1) = 0} if θ ∈ ( 1
2(1+α) ,

3
2(1+α)), α ∈ (1

2 , 1),
{u ∈ H 3

2 (0, 1) : u(1) = 0, ux ∈ 0H
1
2 (0, 1)} if θ = 3

2(1+α) , α ∈ (1
2 , 1),

{u ∈ H(1+α)θ(0, 1) : u(1) = 0, ux(0) = 0} if θ ∈ ( 3
2(1+α) , 1), α ∈ (1

2 , 1).

Furthermore, for every γ ∈ (0, 1 + α), α ∈ (0, 1) and g ∈ [L2(0, 1),Dα] γ
1+α

we have
‖g‖Hγ(0,1) ≤ ‖g‖[L2(0,1),Dα] γ

1+α
and in the case γ 6∈ {1

2 ,
3
2} the inequality is in fact the equality.

We note that ∂
∂x
Dα is sectorial, hence in particular it is closed. Thus, [6, Proposition C.4]

allows us to pass with ∂
∂x
Dα under the integral sign. Hence, by Proposition 2.13, for every

0 < γ < 1 + α we have∥∥∥∥∥ ∂∂xDαvε(·, t)
∥∥∥∥∥
Hγ(0,1)

≤
∥∥∥∥∥ ∂∂xDαvε(·, t)

∥∥∥∥∥
[L2(0,1),Dα] γ

1+α

≤
∥∥∥∥∥ ∂∂xDαT (t)v0

∥∥∥∥∥
[L2(0,1),Dα] γ

1+α

+
∫ t

0

∥∥∥∥∥ ∂∂xDαT (t− τ)f ε(·, τ)
∥∥∥∥∥

[L2(0,1),Dα] γ
1+α

dτ

≤ ct−
γ

1+α−1 ‖v0‖L2(0,1) + c
∫ t

0
(t− τ)−

γ
1+α ‖f ε(·, τ)‖Dα dτ

≤ ct−
γ

1+α−1 ‖v0‖L2(0,1) + ct1−
γ

1+α ‖f ε‖C([0,T ];Dα) .

In view of (3.1), we obtained that ∂αvεx ∈ L∞loc(0, T ;Hγ(0, 1)) for every 0 < γ < 1 + α.
Since ∂αvεx ∈ C((0, T ];L2(0, 1)), applying the interpolation estimate ([19, Corollary 1.2.7])
we obtain that for every 0 < t, τ ≤ T , 0 < γ < γ1 < 1 + α

‖∂αvεx(·, t)− ∂αvεx(·, τ)‖Hγ(0,1)

≤ c(γ, γ1) ‖∂αvεx(·, t)− ∂αvεx(·, τ)‖
1− γ

γ1
L2(0,1) ‖∂

αvεx(·, t)− ∂αvεx(·, τ)‖
γ
γ1
Hγ1 (0,1) .

The last norm is bounded on every compact interval contained in (0, T ] while the first
norm on the r.h.s. tends to zero as t→ τ . Thus,

∂αvεx ∈ C((0, T ];Hγ(0, 1)) for every 0 < γ < 1 + α. (3.41)

Furthermore, from Corollary 2.33 and the identity

vεx = Iα(∂αvεx − ∂αvεx(0)) + ∂αvεx(0) xα

Γ(1 + α) . (3.42)
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we infer that for every ε1 ∈ (0, 1) there holds

vεx ∈ C((0, T ];Hγ+α(ε1, 1)) for every 0 < γ < 1 + α. (3.43)

Our aim is to pass to the limit with ε and obtain a weak solution to (3.38). At first we
will prove the following result.

Theorem 3.13. Let us consider the problem (3.38) with v0 ∈ L2(0, 1), f ∈ L2(0, T ;L1(0, 1)).
Then, there exists

v ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ; 0H
1+α

2 (0, 1)), vt ∈ L2(0, T ; (0H
1+α

2 (0, 1))′)

such that for every w ∈ 0H
1+α

2 (0, 1) and every Ψ ∈ C∞0 (0, T ) there holds∫ T

0
〈vt, w〉(0H

1+α
2 (0,1))′×0H

1+α
2 (0,1)

Ψdt

=
∫ T

0

∫ 1

0
I

1−α
2 vx · ∂

1+α
2
− wdxΨdt+

∫ T

0

∫ 1

0
f · wdxΨdt, (3.44)

where I 1−α
2 is understood in the sense of extension given by Proposition 2.35.

Proof. We multiply (3.39) by vε and integrate with respect to space. Then, we arrive at∫ 1

0
vεt · vεdx−

∫ 1

0

∂

∂x
Dαvε · vεdx =

∫ 1

0
f ε · vεdx for every t ∈ (0, T ).

Since vε ∈ C((0, T ];Dα) we may apply inequality (3.12) and Lemma 3.3 to obtain that

−
∫ 1

0

∂

∂x
Dαvε · vεdx ≥ cα ‖vε‖2

H
1+α

2 (0,1)
.

Hence, we get
1
2
d

dt

∫ 1

0
|vε|2 dx+ cα ‖vε‖2

H
1+α

2 (0,1)
≤ ‖f ε‖L1(0,1) ‖v

ε‖L∞(0,1) .

We apply the Sobolev and Young inequalities and then, we integrate with respect to time
to get

1
2

∫ 1

0
|vε(x, t)|2 dx+ cα

2

∫ t

0
‖vε(·, τ)‖2

H
1+α

2 (0,1)
dτ ≤ 1

2 ‖v0‖2
L2(0,1) + c(α) ‖f ε‖2

L2(0,T ;L1(0,1)) .

(3.45)
Since f ε → f in L2(0, T ;L1(0, 1)), the sequence {vε} is bounded in L∞(0, T ;L2(0, 1)) and
in L2(0, T ;H 1+α

2 (0, 1)). We will show the estimates for vεt . Let w ∈ 0H
1+α

2 (0, 1) and we
choose a sequence wk ∈ 0C∞(0, 1), such that wk → w in 0H

1+α
2 (0, 1) . We multiply (3.39)

by wk and integrate with respect to space∫ 1

0
vεt · wkdx =

∫ 1

0

∂

∂x
Dαvε · wkdx+

∫ 1

0
f ε · wkdx.

We recall that vε ∈ C([0, T ];Dα). Since wk are smooth and wk(1) = 0, we may apply the
inequality (3.14) to obtain∣∣∣∣∫ 1

0
vεt · wkdx

∣∣∣∣ ≤ bα ‖vε‖
H

1+α
2 (0,1)

‖wk‖0H
1+α

2 (0,1)
+ ‖f ε‖L1(0,1) ‖wk‖L∞(0,1) .

Since vεt ∈ C((0, T ];L2(0, 1)) we may pass to the limit with k to get∣∣∣∣∫ 1

0
vεt · wdx

∣∣∣∣ ≤ bα ‖vε‖
H

1+α
2 (0,1)

‖w‖
0H

1+α
2 (0,1)

+ ‖f ε‖L1(0,1) ‖w‖L∞(0,1) .
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Taking the supremum over w such that ‖w‖
0H

1+α
2 (0,1)

= 1 we get

‖vεt‖(0H
1+α

2 (0,1))′
≤ bα ‖vε‖

H
1+α

2 (0,1)
+ c(α) ‖f‖L1(0,1) .

We raise both sides to power two and integrate with respect to time. In consequence, we
obtain that {vεt} is bounded in L2(0, T ; (0H

1+α
2 (0, 1))′). Now we will pass to the limit. We

fix w ∈ 0H
1+α

2 (0, 1). Then, there exists a sequence {wk} ⊆ 0C∞(0, 1) such that wk → w

in 0H
1+α

2 (0, 1). We multiply (3.39) by wk and we integrate it with respect to space. Then,
we multiply the identity by Ψ ∈ C∞0 (0, T ) and integrate with respect to time∫ T

0

∫ 1

0
vεt · wkdxΨdt =

∫ T

0

∫ 1

0

∂

∂x
Dαvε · wkdxΨdt+

∫ T

0

∫ 1

0
f ε · wkdxΨdt.

Since wk are smooth and wk(1) = 0, we may apply identity (3.15) to obtain∫ 1

0

∂

∂x
Dαvε · wkdx =

∫ 1

0
D

1+α
2 vε · ∂

1+α
2
− wkdx.

By Proposition 2.32 the operator ∂
1+α

2
− is linear and bounded from 0H

1+α
2 (0, 1) to L2(0, 1).

Hence, passing to the limit with k we obtain∫ T

0

∫ 1

0
vεt · wdxΨdt =

∫ T

0

∫ 1

0
D

1+α
2 vε · ∂

1+α
2
− wdxΨdt+

∫ T

0

∫ 1

0
f ε · wdxΨdt.

We will proceed with each term separately. Since f ε → f in L2(0, T ;L1(0, 1)) we get∫ T

0

∫ 1

0
f ε · wdxΨdt→

∫ T

0

∫ 1

0
f · wdxΨdt.

Applying the weak-compactness argument we obtain that there exists
χ ∈ L2(0, T ; (0H

1+α
2 (0, 1))′) such that on the subsequence

vεt ⇀ χ ∈ L2(0, T ; (0H
1+α

2 (0, 1))′).

Hence, ∫ T

0

∫ 1

0
vεt · wdxΨdt→

∫ T

0
〈χ,w〉

(0H
1+α

2 (0,1))′×0H
1+α

2 (0,1)
Ψdt.

On the other hand, we have∫ T

0

∫ 1

0
vεt · wdxΨdt = −

∫ T

0

∫ 1

0
vε · wdxΨ′dt→

∫ T

0

∫ 1

0
v · wdxΨ′dt.

Hence, χ is a weak derivative of v and we have∫ T

0

∫ 1

0
vεt · wdxΨdt→

∫ T

0

∫ 1

0
〈vt, w〉(0H

1+α
2 (0,1))′×0H

1+α
2 (0,1)

Ψdt,

where the time derivative is understood in a weak sense. Now we will pass to the limit
in the last term. Applying estimate (3.45) together with Lemma 3.3 we obtain that the
sequence D 1+α

2 vε is bounded in L2(0, T ;L2(0, 1)) and hence, on a subsequence∫ T

0

∫ 1

0
D

1+α
2 vε · ∂

1+α
2
− wdxΨdt→

∫ T

0

∫ 1

0
Φ · ∂

1+α
2
− wdxΨdt,

where Φ ∈ L2(0, T ;L2(0, 1)). We are going to characterize this limit. Since D 1+α
2 vε =

I
1−α

2 vεx and vεx ⇀ vx in L2(0, T ;H α−1
2 (0, 1)) we can write∫ T

0

∫ 1

0
D

1+α
2 vε · ∂

1+α
2
− wdxΨdt =

∫ T

0

∫ 1

0
vεx · I

1−α
2
− ∂

1+α
2
− wdxΨdt

→
∫ T

0

〈
vx, I

1−α
2
− ∂

1+α
2
− w

〉
H
α−1

2 (0,1)×H
1−α

2 (0,1)
Ψdt
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=
∫ T

0

∫ 1

0
I

1−α
2 vx · ∂

1+α
2
− wdxΨdt,

where I 1−α
2 denotes an extension of fractional integral on a dual space given by Proposi-

tion 2.35. This way we obtained (3.44) and the proof is finished.

Motivated by the problem (3.35) we would like to investigate how we can increase the
regularity of the solutions to (3.38) if the source term has better regularity away from left
endpoint of the interval. We formulate the result in the next theorem.

Theorem 3.14. If v0 ∈ H1(0, 1), f ∈ L2(0, T ;L1(0, 1)) ∩ L2(0, T ;H 1−α
2 (ε1, 1)) for fixed

ε1 ∈ (0, 1), then weak solution to (3.38), obtained in Theorem 3.13, satisfies additionally
for every δ ∈ (ε1, 1)

v ∈ L∞((0, T );H1(δ, 1)), vx ∈ L2((0, T );H
1+α

2 (δ, 1)), vt ∈ L2((0, T );H 1−α
2 (δ, 1)).

Moreover, for every ε1 < δ1 < δ < 1, w ∈ L2(δ, 1) and every Ψ ∈ C∞0 (0, T ), there holds∫ T

0

∫ 1

δ
vt · wdxΨdt =

∫ T

0

∫ 1

δ
f · wdxΨdt

+
∫ T

0

∫ 1

δ
[ ∂
∂x
I1−α
δ1 vx + 1

Γ(1− α)
∂

∂x

〈
(x− ·)−α, vx

〉
H

1−α
2 (0,δ1)×H

α−1
2 (0,δ1)

]wdxΨdt,

where, Iβa f(x) := 1
Γ(β)

∫ x
a (x− p)β−1f(p)dp.

Proof. We choose a sequence f ε ∈ C1([0, T ];Dα), such that f ε → f in L2(0, T ;L1(0, 1))
and f ε → f in L2(0, T ;H 1−α

2 (ε1, 1)). Let us briefly justify that such sequence exists.
As it was shown at the beginning of section 3.2.4 we may choose a sequence {f ε1} ⊆
C1([0, T ;C∞0 (0, ε1)]) such that f ε1 → f in L2(0, T ;L1(0, ε1)) and a sequence {f ε2} ⊆
C1([0, T ;C∞0 (ε1, 1)]) such that f ε2 → f in L2(0, T ;H 1−α

2 (ε1, 1)), where we used the fact
that 1−α

2 < 1
2 . Then the sequence {f ε} ≡ f ε1 on [0, T ]× [0, ε1] and f ε ≡ f ε2 on [0, T ]× [ε1, 1]

fulfills the assumptions.
We denote by vε the solution to (3.39) given by analytic semigroup generated by ∂

∂x
Dα.

We note that a sequence vε satisfies the estimate (3.45) and on the subsequence it converges
weakly∗ in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;H 1+α

2 (0, 1)) to a weak solution v to
(3.38) obtained in Theorem 3.13. We fix ε1 < δ < 1. Let η ≥ 0 be an arbitrary smooth
function such that η ≡ 0 on [0, (ε1 + δ)/2], η ≡ 1 on [δ, 1]. At first we will show that

η · ∂
∂x
Dαvε = ∂

∂x
Dα(vε · η)− α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p))vεx(p)dp− ∂α(η′ · vε).

(3.46)
Indeed, applying identity (3.1) and Proposition 2.26 we arrive at

η · ∂
∂x
Dαvε = η · ∂αvεx = ∂α(vεx · η)− α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p))vεx(p)dp

= ∂α(vε · η)x − ∂α(vε · η′)− α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p))vεx(p)dp.
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Applying again identity (3.1) we arrive at (3.46). We multiply (3.39) by (vεη)xx · η and
integrate it over (0, 1). We note that by (3.43) we have (vεη)xx(·, t) ∈ L2(0, 1) for all
t ∈ (0, T ). We obtain∫ 1

0
vεt η · (vεη)xxdx−

∫ 1

0

∂

∂x
Dαvε · η · (vεη)xxdx =

∫ 1

0
f εη · (vεη)xxdx.

Integrating by parts the first component, applying vεt (1, t) = 0 and making use of the
identity (3.46) we get
1
2
d

dt

∫ 1

0
|(vεη)x|2 dx+

∫ 1

0

∂

∂x
Dα(vεη)·(vεη)xxdx = −

∫ 1

0
f εη·(vεη)xxdx+

∫ 1

0
G(x, t)·(vεη)xxdx,

(3.47)
where

G := G1 +G2 := α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p))vεx(p)dp+ ∂α(η′ · vε).

By (3.41) we obtain that ∂
∂x
Dαvε(·, t) ∈ AC[0, 1] for t > 0. Hence, using (vεη)x(0, t) = 0,

Proposition 2.30 and estimate (2.19) we get∫ 1

0

∂

∂x
Dα(vεη) · (vεη)xxdx =

∫ 1

0
Dα(vεη)x · (vεη)xxdx

=
∫ 1

0
Dα(vεη)x · ∂1−αDα(vεη)xdx ≥ cα ‖Dα(vεη)x‖2

H
1−α

2 (0,1)
.

Applying Proposition 2.32 together with Proposition 2.30 and the fact that (vεη)x vanishes
at zero we may write

‖Dα(vεη)x‖2
H

1−α
2 (0,1)

= cα
∥∥∥D α+1

2 (vεη)x
∥∥∥2

L2(0,1)
= cα

∥∥∥∂ α+1
2 (vεη)x

∥∥∥2

L2(0,1)
.

Finally, using Proposition 2.32 we obtain the estimate∫ 1

0

∂

∂x
Dα(vεη) · (vεη)xxdx ≥ cα ‖(vεη)x‖2

H
1+α

2 (0,1)
. (3.48)

We note that ∣∣∣∣∫ 1

0
G(x, t) · (vεη)xxdx

∣∣∣∣ ≤ ‖(vεη)xx‖
H
α−1

2 (0,1)
‖G(·, t)‖

H
1−α

2 (0,1)
.

Using Remark 2.2 and Young inequality we obtain∣∣∣∣∫ 1

0
G(x, t) · (vεη)xxdx

∣∣∣∣ ≤ c(α) ‖(vεη)x‖
H
α+1

2 (0,1)
‖G(·, t)‖

H
1−α

2 (0,1)

≤ cα
8 ‖(v

εη)x‖2
H
α+1

2 (0,1)
+ c(α) ‖G(·, t)‖2

H
1−α

2 (0,1)
,

where cα denotes a constant from estimate (3.48) and by c(α) we denote a generic constant
dependent on α. Now we will estimate the H 1−α

2 - norm of G. Since (η′vε)(0) = 0, we have

‖∂α(η′vε)‖
H

1−α
2 (0,1)

= ‖Dα(η′vε)‖
H

1−α
2 (0,1)

≤ c(α)
∥∥∥D 1+α

2 (η′vε)
∥∥∥
L2(0,1)

≤ c(α) ‖η′vε‖
H

1+α
2 (0,1)

,

where we applied Proposition 2.30 and Proposition 2.32. Thus,

‖G2‖
H

1−α
2 (0,1)

≤ c(α) ‖η′vε‖
H

1+α
2 (0,1)

. (3.49)

In order to estimate the H 1−α
2 - norm of G1, it is enough to estimate the L2- norm of

∂
1−α

2 G1 and apply Proposition 2.32. We note that

Γ
(
α + 1

2

)
∂

1−α
2 G1(x) = Γ

(
α + 1

2

)
∂

1−α
2

∫ x

0
(x− p)−α−1(η(x)− η(p))vεx(p)dp
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= ∂

∂x

∫ x

0
(x− p)α−1

2

∫ p

0
(p− τ)−α−1(η(p)− η(τ))vεx(τ)dτdp

= ∂

∂x

∫ x

0
vεx(τ)

∫ x

τ
(x− p)

α−1
2 (p− τ)−α−1(η(p)− η(τ))dpdτ =

 p = τ + w(x− τ)
dp = (x− τ)dw


= ∂

∂x

∫ x

0
vεx(τ)(x− τ)−

α+1
2

∫ 1

0
(1− w)

α−1
2 w−α

1
w

(η(τ + w(x− τ))− η(τ))dwdτ.

Using the fact that vεx is bounded with respect to space for each positive time and the
estimate

|η(τ + w(x− τ))− η(τ)| ≤ ‖η‖W 1,∞(0,1)w(x− τ) for every w ∈ (0, 1), 0 ≤ τ < x ≤ 1,

it is not difficult to show that we may differentiate under the integral. Furthermore,
denoting by B(·, ·) the Beta function we may estimate as follows∣∣∣∣vεx(τ)(x− τ)−

α+1
2

∫ 1

0
(1− w)

α−1
2 w−α

1
w

(η(τ + w(x− τ))− η(τ))dx
∣∣∣∣

≤ ‖η‖W 1,∞(0,1)B(1− α, (α + 1)/2)
∣∣∣vεx(τ)(x− τ)1−α+1

2
∣∣∣→ 0 as τ → x−.

Thus, proceeding with differentiation, we have

Γ
(
α + 1

2

)
∂

1−α
2 G1(x) =

∫ x

0
vεx(τ)(x− τ)−

α+1
2

∫ 1

0
(1− w)

α−1
2 w−αη′(τ + w(x− τ))dwdτ

−α + 1
2

∫ x

0
vεx(τ)(x− τ)−

α+1
2 −1

∫ 1

0
(1− w)α−1

2 w−α
1
w

(η(τ + w(x− τ))− η(τ))dwdτ.

Thus,

‖G1‖
H

1−α
2 (0,1)

≤ c(α)
∥∥∥∥∫ x

0
vεx(τ)(x− τ)−

α+1
2

∫ 1

0
(1− w)α−1

2 w−αη′(τ + w(x− τ))dwdτ
∥∥∥∥
L2(0,1)

+c(α)
∥∥∥∥∥
∫ x

0
vεx(τ)(x− τ)−

α+1
2

∫ 1

0
(1− w)α−1

2 w−α
(η(τ + w(x− τ))− η(τ))

w(x− τ) dwdτ

∥∥∥∥∥
L2(0,1)

≤ c(α) ‖η‖W 1,∞(0,1)

∥∥∥I 1−α
2 |vεx|

∥∥∥
L2(0,1)

≤ c(α) ‖η‖W 1,∞(0,1) ‖v
ε
x‖H α−1

2 (0,1)
, (3.50)

where in the last inequality we applied Proposition 2.35. We note that we could skip the
absolute value in the last term. Indeed, let us denote by 〈·, ·〉 the duality pairing between
the spaces H α−1

2 (0, 1), H 1−α
2 (0, 1). Since vεx is continuous with respect to space for any

positive time, we may write

‖|vεx|‖H α−1
2 (0,1)

= sup
w∈H

1−α
2 (0,1),‖w‖=1

|〈|vεx| , w〉| = sup
w∈H

1−α
2 (0,1),‖w‖=1

∣∣∣∣∫ 1

0
|vεx| · wdx

∣∣∣∣
≤ sup
w∈H

1−α
2 (0,1),‖w‖=1

∣∣∣∣∫ 1

0
vεx · w · χ{x∈(0,1):vεx≥0}dx

∣∣∣∣+ sup
w∈H

1−α
2 (0,1),‖w‖=1

∣∣∣∣∫ 1

0
−vεx · w · χ{x∈(0,1):vεx<0}dx

∣∣∣∣
≤ sup

w∈H
1−α

2 (0,1),‖w‖=1

∣∣∣∣∫ 1

0
vεx · wdx

∣∣∣∣+ sup
w∈H

1−α
2 (0,1),‖w‖=1

∣∣∣∣∫ 1

0
−vεx · wdx

∣∣∣∣ = 2 ‖vεx‖H α−1
2 (0,1)

,

where we denoted by χ the characteristic function. Thus, (3.50) is justified. Combining
(3.49) and (3.50) we obtain

‖G‖2
H

1−α
2 (0,1)

≤ c(α, η) ‖vε‖2
H

1+α
2 (0,1)

. (3.51)
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By Schwarz inequality, Remark 2.2 and Young inequality we may also write∣∣∣∣∫ 1

0
f εη · (vεη)xxdx

∣∣∣∣ ≤ ‖(vεη)xx‖
H
α−1

2 (0,1)
‖f εη‖

H
1−α

2 (0,1)

≤ cα
8 ‖(v

εη)x‖2
H
α+1

2 (0,1)
+ c(α) ‖f εη‖2

H
1−α

2 (0,1)
. (3.52)

Using estimates (3.48), (3.51) and (3.52) in (3.47) we obtain
d

dt

∫ 1

0
|(vεη)x|2 dx+ cα

2 ‖(v
εη)x‖2

H
α+1

2 (0,1)
≤ c(α) ‖f εη‖2

H
1−α

2 (0,1)
+ c(α, η) ‖vε‖2

H
1+α

2 (0,1)
.

Applying the estimate (3.45) and recalling that f ε → f in L2(0, T ;L1(0, 1)) we obtain for
every t ∈ (0, T ] ∫ 1

0
|(vεη)x(·, t)|2 dx+ cα

2

∫ t

0
‖(vεη)x(·, τ)‖2

H
α+1

2 (0,1)
dτ

≤ c(α, η) ‖v0‖H1(0,1) + c(α) ‖f εη‖2
L2(0,t;H

1−α
2 (0,1))

+ c(α, η) ‖f‖2
L2((0,t);L1(0,1)) .

If we recall that f ε → f in L2(0, T ;H 1−α
2 (ε1, 1)), η ≡ 0 on [0, (ε1 + δ)/2] and η ≡ 1 on

[δ, 1] for 0 < ε1 < δ, we get

‖vε‖2
L∞(0,T ;H1(δ,1)) + cα

2 ‖v
ε
x‖

2
L2(0,T ;H

α+1
2 (δ,1))

≤ c(α, δ, ε1)
(
‖v0‖2

H1(0,1) + ‖f‖2
L2(0,T ;H

1−α
2 (ε1,1))

+ ‖f‖2
L2(0,T );L1(0,1)

)
. (3.53)

We obtain that {vε} is bounded uniformly with respect to ε in L∞(0, T ;H1(δ, 1)) and {vεx}
is bounded uniformly with respect to ε in L2(0, T ;H α+1

2 (δ, 1)) for every δ ∈ (ε1, 1). Thus,
on a subsequence

vε
∗
⇀ v in L∞(0, T ;H1(δ, 1)) and vεx ⇀ vx in L2(0, T ;H

α+1
2 (δ, 1))

for every δ ∈ (ε1, 1). In order to estimate vεt we note that for any ε1 < δ < 1 and any
smooth function η such that η ≡ 0 on [0, (ε1 + δ)/2], η ≡ 1 on [δ, 1] we have

vεt η = ∂αvεxη + f εη

and by (3.46)
∂αvεxη = ∂α(vεη)x +G(t, x) (3.54)

Moreover, since η(0) = η′(0) = 0, by Proposition 2.32 and Proposition 2.30

‖∂α(vεη)x‖
H

1−α
2 (0,1)

=
∥∥∥D 1+α

2 (vεη)x
∥∥∥
L2(0,1)

(3.55)

and by Lemma 3.3 ∥∥∥D 1+α
2 (vεη)x

∥∥∥
L2(0,1)

= c(α) ‖(vεη)x‖
H

1+α
2 (0,1)

. (3.56)

Thus, combining (3.51), (3.53), (3.54),(3.55), (3.56), we arrive at

‖∂αvεx‖L2(0,T ;H
1−α

2 (δ,1))
≤ c(α, δ, ε1)

(
‖v0‖2

H1(0,1) + ‖f‖2
L2(0,T ;H

1−α
2 (ε1,1))

+ ‖f‖2
L2(0,T );L1(0,1)

)
(3.57)
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for every δ ∈ (ε1, 1). Thus, ∂αvεx is bounded on L2(0, T ;H 1−α
2 (δ, 1)) for every δ ∈ (ε1, 1)

and so is vεt . It remains to pass to the limit. We fix δ∗ ∈ (ε1, 1). We multiply (3.39) by
w ∈ L2(δ∗, 1) and integrate over (δ∗, 1). Then we multiply by Φ ∈ C∞0 (0, T ) and integrate
with respect to time.∫ T

0
Φ
∫ 1

δ∗
vεt · wdxdt =

∫ T

0
Φ
∫ 1

δ∗

∂

∂x
Dαvε · wdxdt+

∫ T

0
Φ
∫ 1

δ∗
f ε · wdxdt.

Passing to a subsequence we have∫ T

0
Φ
∫ 1

δ∗
vεt · wdxdt→

∫ T

0
Φ
∫ 1

δ∗
vt · wdxdt

and ∫ T

0
Φ
∫ 1

δ∗
f ε · wdxdt→

∫ T

0
Φ
∫ 1

δ∗
f · wdxdt.

Moreover, by the identity (3.1) and estimate (3.57) we obtain that there exists Υ ∈
L2(0, T ;H 1−α

2 (δ∗, 1)) such that on the subsequence
∂

∂x
Dαvε ⇀ Υ in L2(0, T ;H

1−α
2 (δ∗, 1)).

Thus, we get that ∫ T

0
Φ
∫ 1

δ∗

∂

∂x
Dαvε · wdxdt→

∫ T

0
Φ
∫ 1

δ∗
Υ · wdxdt. (3.58)

Let us characterize this limit. We choose δ1 ∈ (ε1, δ∗). Then,

Γ(1− α) ∂
∂x
Dαvε(x) = ∂

∂x

∫ x

δ1
(x− p)−αvεx(p)dp− α

∫ δ1

0
(x− p)−α−1vεx(p)dp. (3.59)

We will pass to the weak limit with both terms on the r.h.s. separately. Let us begin with
the last term in (3.59) If we recall that {vεx} is bounded on L2(0, T ;H α−1

2 (0, 1)), we may
write

−α
∫ T

0
Φ
∫ 1

δ∗

∫ δ1

0
(x− p)−α−1vεx(p)dp · wdxdt =

∫ T

0
Φ
∫ 1

δ∗

〈
∂

∂x
(x− ·)−α, vεx

〉
H

1−α
2 (0,δ1)×H

α−1
2 (0,δ1)

wdxdt

→
∫ T

0
Φ
∫ 1

δ∗

〈
∂

∂x
(x− ·)−α, vx

〉
H

1−α
2 (0,δ1)×H

α−1
2 (0,δ1)

wdxdt

=
∫ T

0
Φ
∫ 1

δ∗

∂

∂x

〈
(x− ·)−α, vx

〉
H

1−α
2 (0,δ1)×H

α−1
2 (0,δ1)

wdxdt,

where the last identity follows from the continuity of the duality pairing. In view of this
convergence and identity (3.59) we obtain that on the subsequence ∂

∂x

∫ x
δ1

(x− p)−αvεx(p)dp
is weakly convergent in L2(0, T ;L2(δ∗, 1)).

If we take Ψ ∈ C∞0 (δ∗, 1) we can write∫ T

0
Φ
∫ 1

δ∗

∂

∂x

∫ x

δ1
(x− p)−αvεx(p)dpΨdxdt = −

∫ T

0
Φ
∫ 1

δ∗

∫ x

δ1
(x− p)−αvεx(p)dpΨ′dxdt.

In particular, passing to another subsequence vεx → v in L2(0, T ;L2(δ, 1)) for every δ > ε1.
By continuity of fractional integral on L2 we obtain that∫ T

0
Φ
∫ 1

δ∗

∫ x

δ1
(x− p)−αvεx(p)dpΨ′dxdt→

∫ T

0
Φ
∫ 1

δ∗

∫ x

δ1
(x− p)−αvx(p)dpΨ′dxdt.
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Hence, on the subsequence
∂

∂x

∫ x

δ1
(x− p)−αvεx(p)dp ⇀

∂

∂x

∫ x

δ1
(x− p)−αvx(p)dp,

where ∂
∂x

is a weak derivative.
Making use of this result together with (3.59) in (3.58) we obtain that, for every

ε1 < δ1 < δ∗ < 1 ∫ T

0
Φ
∫ 1

δ∗

∂

∂x
Dαvε · wdxdt

→
∫ T

0
Φ
∫ 1

δ∗

[
∂

∂x
I1−α
δ1 vx + 1

Γ(1− α)
∂

∂x

〈
(x− ·)−α, vx

〉
H

1−α
2 (0,δ1)×H

α−1
2 (0,δ1)

]
wdxdt,

which finishes the proof.



Chapter 4

A space-fractional Stefan problem

In this chapter we will present an example of application of Theorem 3.5. We will solve
a space-fractional Stefan problem derived in section 2.4. The results of this chapter, apart
from the final section, come from [28].

Our aim is to prove the following theorem.

Theorem 4.1. Let b, T > 0 and α ∈ (0, 1). Let us assume that u0 ∈ H1+α(0, b), u′0 ∈
0H

α(0, b), u0(b) = 0 and u0 ≥ 0, u0 6≡ 0. Further let us assume that there exists M > 0
such that for every x ∈ [0, b]

u0(x) ≤ MΓ(2− α)
b1−α (b− x).

Then, there exists exactly one (u, s) a solution to



ut − ∂
∂x
Dαu = 0 in {(x, t) : 0 < x < s(t), 0 < t < T} =: Qs,T ,

ux(0, t) = 0, u(t, s(t)) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) for 0 < x < s(0) = b,

ṡ(t) = −(Dαu)(s(t), t) for t ∈ (0, T ),

(4.1)

such that s ∈ C1[0, T ], for every t ∈ [0, T ] there holds 0 < ṡ(t) ≤ M , u ∈ C(Qs,T ),
ut,

∂
∂x
Dαu ∈ C(Qs,T ), Dαu ∈ C(Qs,T ) and for every t ∈ [0, T ] ux(·, t) ∈ 0H

α(0, s(t)).
Moreover, ux ∈ C(Qs,T ) in the case α ∈ (1

2 , 1), while in the case α ∈ (0, 1
2 ] we have

ux ∈ C(Qs,T \ ({t = 0} × [0, b])). Furthermore, the boundary conditions (4.1)2 are satisfied
for every t ∈ [0, T ]. Finally, there exists β ∈ (α, 1), such that for every t ∈ (0, T ] and
every 0 < ε < ω < s(t) we have u(·, t) ∈ W 2, 1

1−β (ε, ω).

Remark 4.1. We note that we obtain the continuity of ṡ up to the origin because we
assume high regularity of the initial condition u0. Indeed, since u0,x ∈ 0H

α(0, b) applying
Corollary 2.33 we obtain that Dαu0 = I1−αu0,x ∈ 0H

1(0, b). Hence, we may expect the
continuity of Dαu up to the initial time.
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Our approach follows the standard methods for solving the classical Stefan problem,
presented in [1]. First of all, we focus our attention on the problem considered in a non
cylindrical domain with a given function s. We apply a transformation to the cylindrical
domain and we find a regular solution by means of the abstract evolution operator theory.
Then, we prove the weak extremum principle and the space-fractional version of Hopf
lemma, i.e. (Dαu)(s(t), t) < 0 ∀ t ∈ (0, T ]. Finally, by the Schauder fixed point theorem,
we are able to obtain existence of a pair (u, s) which is a classical solution to (4.1). At
last, we prove the monotone dependence upon data in order to obtain the uniqueness of
the solution.

4.1. Solution to (4.1) with a given function s.

At first, we will find a regular solution to (4.1) assuming that function s is given.
Namely, we will search for a solution to


ut − ∂

∂x
Dαu = 0 in Qs,T ,

ux(0, t) = 0, u(t, s(t)) = 0 for t ∈ (0, T ),
u(x, 0) = u0(x) for 0 < x < b

(4.2)

with a given function s : [0, T ]→ R. We assume that

s ∈ C0,1[0, T ], s(0) = b, ∃ M > 0 such that 0 < ṡ(t) ≤M a.e. on (0, T ). (4.3)

It is worth to notice that the final result will be proven by the Schauder fixed point theorem
in C[0, T ]. Hence, we do not consider here s ∈ C1[0, T ], because this space is not closed in
C[0, T ]. We will deduce C1[0, T ] regularity of s at the end of the proof.

We search for a real-valued solution to (4.1), hence henceforth we discuss only real-valued
functions.

4.1.1. Transformation to the cylindrical domain

First of all, we will change the coordinates in order to pass to the cylindrical domain.
We apply the standard substitution p = x

s(t) and we define

v(p, t) := u(s(t)p, t) = u(x, t). (4.4)

We will rewrite the system (4.2) in terms of v. Firstly, we note that ∂
∂p

= s(t) ∂
∂x
, thus

vp(p, t) = ∂

∂p
v(p, t) = ∂

∂p
u(s(t)p, t) = s(t) ∂

∂x
u(s(t)p, t) = s(t)ux(x, t),

vt(p, t) = d

dt
u(s(t)p, t) = ut(x, t) + pṡ(t)ux(x, t).

Together we have
ut(x, t) = vt(p, t)− p

ṡ(t)
s(t)vp(p, t).
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Furthermore, since vr(r, t) = s(t)ux(s(t)r, t), we may write

Γ(1− α)(∂αvp)(p, t) = ∂

∂p

∫ p

0
(p− r)−αvr(r, t)dr = s(t) ∂

∂p

∫ p

0
(p− r)−αux(s(t)r, t)dr

=

 s(t)r = w

s(t)dr = dw

 = ∂

∂p

∫ s(t)p

0
(p− w

s(t))−αux(w, t)dw

= sα(t) ∂
∂p

∫ s(t)p

0
(s(t)p− w)−αux(w, t)dw = sα+1(t) ∂

∂x

∫ x

0
(x− w)−αux(w, t)dw.

In this way we obtained that

(∂αux)(x, t) = 1
s1+α(t)(∂αvp)(p, t). (4.5)

Denoting
v0(p) = u0(pb) (4.6)

and renaming p by x we obtain that v satisfies


vt − x ṡ(t)s(t)vx −

1
s1+α(t)

∂
∂x
Dαv = 0 for 0 < x < 1, 0 < t < T,

vx(0, t) = 0, v(1, t) = 0 for 0 < t < T,

v(x, 0) = v0(x) for 0 < x < 1.
(4.7)

In the next section we will find a unique solution to (4.7) which will have appropriate
regularity properties.

4.1.2. Solution to transformed problem

We will solve the system (4.7) by means of the theory of evolution operators. Let
us define the family of operators A(·) : Dα ⊆ L2(0, 1)→ L2(0, 1) given by the following
formula

A(t) = x
ṡ(t)
s(t)

∂

∂x
+ 1
s1+α(t)

∂

∂x
Dα. (4.8)

Let us denote
A1(t) = x

ṡ(t)
s(t)

∂

∂x
and A2(t) = 1

s1+α(t)
∂

∂x
Dα.

From Theorem 3.5 and assumption (4.3) we may infer that the family A2(·) satisfies
the assumptions of Theorem 2.15. Indeed, the Theorem 3.5 implies that for every t ∈ [0, T ]
A2(t) is sectorial. Moreover, for 0 ≤ t, τ ≤ T , u ∈ Dα

‖(A2(t)− A2(τ))u‖L2(0,1) ≤
|s1+α(t)− s1+α(τ)|
s1+α(t)s1+α(τ)

∥∥∥∥∥ ∂∂xDαu

∥∥∥∥∥
L2(0,1)

≤ cα(1 + α)M(b+MT )α
b2(1+α) |t− τ | ‖ux‖0Hα(0,1) ≤

cα(1 + α)M(b+MT )α
b2(1+α) |t− τ | ‖u‖Dα ,

where we applied identity (3.1), Proposition (2.32) and the assumption (4.3). In conse-
quence, we obtain that

t 7→ A2(t) ∈ C0,1([0, T ];B(Dα, L2(0, 1))). (4.9)
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However, since ṡ is not Hölder continuous we are not allowed to use directly the results
from Theorem 2.15 to the family A(·). Hence, we are going to find firstly a mild solution
to the problem (4.7). Then we will show that this mild solution actually satisfies (4.7)
almost everywhere. Finally, we will further increase the regularity of the solution. Let us
denote by {G(t, σ) : 0 ≤ σ ≤ t ≤ T} the evolution operator associated with A2(t), given
by Theorem 2.15. For clarity we rewrite here, the general result from Proposition 2.18 in
our special case. If g ∈ [L2(0, 1),Dα]δ then for any 0 ≤ σ < t ≤ T and every δ ∈ (0, 1)

‖G(t, σ)g‖Dα ≤
c

(t− σ)1−δ ‖g‖[L2(0,1),Dα]δ . (4.10)

Moreover, for any 0 ≤ δ < θ < 1, we have

‖G(t, σ)g‖[L2(0,1),Dα]θ ≤
c

(t− σ)θ−δ ‖g‖[L2(0,1),Dα]δ (4.11)

and for θ ∈ (0, 1), δ ∈ (0, 1]

‖A2(t)G(t, σ)g‖[L2(0,1),Dα]θ ≤
c

(t− σ)1+θ−δ ‖g‖[L2(0,1),Dα]δ . (4.12)

Finally, for every a ∈ (0, 1) and every 0 ≤ σ < r < t ≤ T

‖A2(t)G(t, σ)g − A2(r)G(r, σ)g‖L2(0,1)

≤ c

(
(t− r)a

(r − σ)1−δ + 1
(r − σ)1−δ −

1
(t− σ)1−δ

)
‖g‖[L2(0,1),Dα]δ . (4.13)

The constant c in estimates above is positive and depends only on α, θ, δ, T and b,M from
(4.3). Moreover, function T 7→ c(α, θ, δ, b,M, T ) is increasing.
We would like to find a mild solution to (4.7). For this purpose we rewrite this equation
in the integral form

v(x, t) = G(t, 0)v0(x) +
∫ t

0
G(t, σ) ṡ(σ)

s(σ)xvx(x, σ)dσ. (4.14)

We say that v ∈ C([0, T ];Dα) is a mild solution to (4.7) if it satisfies (4.14).

Theorem 4.2. Let us assume that v0 ∈ Dα. Then, there exists a unique solution to (4.14)
belonging to C([0, T ];Dα).

Proof. We will prove this result by the Banach fixed point theorem. We define the operator

(Pv)(x, t) = G(t, 0)v0(x) +
∫ t

0
G(t, σ) ṡ(σ)

s(σ)xvx(x, σ)dσ. (4.15)

We will show that P : C([0, T ];Dα)→ C([0, T ];Dα). Indeed, let v ∈ C([0, T ];Dα). Since
v0 ∈ Dα by Proposition 2.16 we obtain that G(t, 0)v0 ∈ C([0, T ];Dα). Let us pass to the
second term. We will prove that

A2(t)
∫ t

0
G(t, σ) ṡ(σ)

s(σ)xvx(x, σ)dσ ∈ C([0, T ];L2(0, 1)). (4.16)

74



4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION S.

We note that, since v ∈ C([0, T ];Dα), we have vx ∈ C([0, T ]; 0H
α(0, 1)), hence xvx ∈

C([0, T ]; 0H
α(0, 1)). It is worth to notice that vx(1, t) does not have to vanish, thus we

cannot consider xvx as an element of C([0, T ]; [L2(0, 1),Dα] α
α+1

) for α ≥ 1
2 . That is way,

we proceed as follows. Let us denote δ = α
α+1 in the case α < 1

2 and for α ∈ [1
2 , 1) let us

mean by δ an arbitrary number belonging to the interval (0, 1
2(1+α)). Then, in view of

characterization (3.40) we obtain that

xvx ∈ C([0, T ]; [L2(0, 1),Dα]δ). (4.17)

Let us denote
f(x, σ) := ṡ(σ)

s(σ)xvx(x, σ). (4.18)

Since for every t ∈ [0, T ] the operator A2(t) is sectorial, then in particular it is closed and
by [6, Proposition C.4] we may pass with A2(t) under the integral sign. Hence, for any
0 ≤ τ < t ≤ T we may estimate as follows∥∥∥∥A2(t)

∫ t

0
G(t, σ)f(·, σ)dσ − A2(τ)

∫ τ

0
G(τ, σ)f(·, σ)dσ

∥∥∥∥
L2(0,1)

=
∥∥∥∥∫ t

0
A2(t)G(t, σ)f(·, σ)dσ −

∫ τ

0
A2(τ)G(τ, σ)f(·, σ)dσ

∥∥∥∥
L2(0,1)

≤

∫ t

τ
‖A2(t)G(t, σ)f(·, σ)‖L2(0,1) dσ+

∫ τ

0
‖(A2(t)G(t, σ)− A2(τ)G(τ, σ))f(·, σ)‖L2(0,1) dσ ≡:J1.

We note that for any w ∈ Dα, using assumption (4.3), identity (3.1) and Proposition 2.32,
we have

‖A2(t)w‖L2(0,1) ≤
1

b1+α ‖∂
αwx‖L2(0,1) ≤

cα
b1+α ‖wx‖0Hα(0,1) ≤

cα
b1+α ‖w‖Dα . (4.19)

Hence, making use of (4.10) and (4.13) we may estimate J1 as follows,

|J1| ≤ c ‖f‖L∞(0,T ;[L2(0,1),Dα]δ)

∫ t

τ
(t− σ)δ−1dσ

+c ‖f‖L∞(0,T ;[L2(0,1),Dα]δ)

∫ τ

0

(t− τ)a
(τ − σ)1−δ + 1

(τ − σ)1−δ −
1

(t− σ)1−δ dσ

≤ c

δ
‖f‖L∞(0,T ;[L2(0,1),Dα]δ)

(
2(t− τ)δ + (t− τ)aτ δ + τ δ − tδ

)
for any a ∈ (0, 1). The expression above tends to zero as τ → t for any 0 ≤ τ < t ≤ T ,
hence (4.16) is proven. We note that for any w ∈ Dα, since w(1) = 0 we may apply the
Poincaré inequality to obtain

‖w‖2
Dα = ‖w‖2

L2(0,1) + ‖wx‖2
0Hα(0,1) ≤ c ‖wx‖2

0Hα(0,1) ≤ cα

∥∥∥∥∥ ∂∂xDαw

∥∥∥∥∥
2

L2
.

Hence, we observe that (4.3) together with (4.16) leads to∫ t

0
G(t, σ) ṡ(σ)

s(σ)xvx(x, σ)dσ ∈ C([0, T ];Dα). (4.20)

Thus, we have shown that P : C([0, T ];Dα)→ C([0, T ];Dα).
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Now we will show that P is a contraction on C([0, T1];Dα) for T1 small enough. To
this end we fix v, w ∈ C([0, T1];Dα). Then, we may estimate using (4.3), (4.10) and (4.17)

‖Pv − Pw‖C([0,T1];Dα) ≤ sup
t∈(0,T1)

M

b

∫ t

0
‖G(t, σ)x[vx − wx](·, σ)‖Dα dσ

≤ cM

b
sup

t∈(0,T1)

∫ t

0
(t− σ)δ−1 ‖[vx − wx](·, σ)‖[L2(0,1),Dα]δ dσ

≤ cM

b
sup

t∈(0,T1)

∫ t

0
(t− σ)δ−1dσ ‖vx − wx‖C([0,T1];0Hα(0,1)) ≤

cM

b

T δ1
δ
‖v − w‖C([0,T1];Dα) .

Hence, for T1 <
(
bδ
cM

) 1
δ the operator P is a contraction on C([0, T1];Dα). Thus, by the

Banach fixed point theorem, we obtain the existence of a unique solution to (4.14) on
the interval [0, T1] which belongs to C([0, T1];Dα). In order to extend the solution to the
whole interval [0, T ] we assume that we have already obtained the solution ṽ to (4.14) on
the interval [0, Tk] for fixed k ∈ N \ {0}. We will find a unique solution on the interval
[0, Tk+1], where Tk+1 > Tk. We define the space

Xk(Tk+1) = {v ∈ C([0, Tk+1];Dα) : v ≡ ṽ on [0, Tk]},

with a norm induced from C([0, Tk+1];Dα). Then, by definition of ṽ and the same reasoning
as above we obtain that the operator P defined by (4.15) satisfy P : Xk(Tk+1)→ Xk(Tk+1).
Furthermore, for v1, v2 ∈ Xk(Tk+1) there holds∥∥∥Pv1 − Pv2

∥∥∥
C([0,Tk+1];Dα)

=
∥∥∥∥∥
∫ t

Tk

G(t, σ) ṡ(σ)
s(σ)x[v1

x − v2
x](·, σ)dσ

∥∥∥∥∥
C([Tk,Tk+1];Dα)

.

Applying (4.3) and estimate (4.10) we get∥∥∥Pv1 − Pv2
∥∥∥
C([0,Tk+1];Dα)

≤ sup
t∈(Tk,Tk+1)

M

b

∫ t

Tk

∥∥∥G(t, σ)x[v1
x − v2

x](·, σ)
∥∥∥
Dα
dσ

≤ cM

b
sup

t∈(Tk,Tk+1)

∫ t

Tk

(t− σ)δ−1dσ
∥∥∥v1

x − v2
x

∥∥∥
C([0,Tk+1];[L2(0,1);Dα]δ)

≤ cM

b

(Tk+1 − Tk)δ
δ

∥∥∥v1 − v2
∥∥∥
C([0,Tk+1];Dα)

.

Hence, for (Tk+1 − Tk) <
(
bδ
cM

) 1
δ the operator P is a contraction on Xk(Tk+1) and we

may extend uniquely the solution ṽ on the interval [0, Tk+1]. The length of the interval
[Tk, Tk+1] does not depend on k. Thus, after a finite number of steps we obtain the unique
solution to (4.14) which belongs to C([0, T ];Dα).

Lemma 4.3. The mild solution v obtained in Theorem 4.2 satisfies v ∈ C([0, T ];Dα),
vt ∈ L∞(0, T ;L2(0, 1)) and

vt − A(t)v = 0

for almost all t ∈ [0, T ] in the sense of L2(0, 1).
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Proof. Using definition (4.18) we may rewrite (4.14) as follows

v(x, t) = G(t, 0)v0(x) +
∫ t

0
G(t, σ)f(x, σ)dσ. (4.21)

The proof is based on the reasoning carried in the proof of [19, Lemma 6.2.1]. We note
that, since f is not Hölder continuous, we can not apply [19, Lemma 6.2.1] directly. We
will show that v which satisfies (4.21) is differentiable. By Proposition 2.16 for every
t ∈ [0, T ] we have

∂

∂t
G(t, 0)v0 = A2(t)G(t, 0)v0 in L2(0, 1).

We will calculate the difference quotient of the second term on the right hand side of (4.21).
Let us assume that h > 0, in the case h < 0 the proof is similar. We have

1
h

[∫ t+h

0
G(t+ h, σ)f(x, σ)dσ −

∫ t

0
G(t, σ)f(x, σ)dσ

]

= 1
h

∫ t

0
(G(t+ h, σ)−G(t, σ))f(x, σ)dσ + 1

h

∫ t+h

t
G(t+ h, σ)f(x, σ)dσ =: I1 + I2.

In order to deal with I1 we recall that by Definition 2.15 for every 0 ≤ σ < t ≤ T and
every g ∈ L2(0, 1) the following limit holds in L2(0, 1)

lim
h→0

1
h

(G(t+ h, σ)−G(t, σ))g = A2(t)G(t, σ)g.

Making use of (4.17) we obtain that f ∈ L∞(0, T ; [L2(0, 1),Dα]δ), where δ = α
1+α for

α ∈ (0, 1
2) and δ denotes any fixed number from the interval (0, 1

2(1+α)) if α ∈ [1
2 , 1).

Further, we note that∥∥∥∥1
h

[G(t+ h, σ)−G(t, σ)]f(·, σ)
∥∥∥∥
L2(0,1)

=
∥∥∥∥∥1
h

∫ t+h

t

∂

∂p
G(p, σ)f(·, σ)dσ

∥∥∥∥∥
L2(0,1)

=
∥∥∥∥∥1
h

∫ t+h

t
A(p)G(p, σ)f(·, σ)dp

∥∥∥∥∥
L2(0,1)

≤ c

h

∫ t+h

t
(p− σ)δ−1dp ‖f‖L∞(0,T ;[L2(0,1),Dα]δ)

≤ c(t− σ)δ−1 ‖f‖L∞(0,T ;[L2(0,1),Dα]δ) ,

where we applied (4.10) and (4.19). Hence, we may apply the Lebesgue dominated
convergence theorem to pass to the limit under the integral sign in I1 and we get

1
h

∫ t

0
(G(t+ h, σ)−G(t, σ))f(x, σ)dσ →

∫ t

0
A2(t)G(t, σ)f(x, σ)dσ.

We decompose I2 as follows
1
h

∫ t+h

t
G(t+ h, σ)f(x, σ)dσ = 1

h

∫ t+h

t
G(t, σ)f(x, σ)dσ

+ 1
h

∫ t+h

t
(G(t+ h, σ)−G(t, σ))f(x, σ)dσ = I2,1 + I2,2.

We note that due to the Lebesgue differentiation theorem in Banach spaces (see [4]) we
obtain that I2,1 converges to f(x, t) in L2(0, 1) for almost all t ∈ (0, T ]. For I2,2 we have

I2,2 = 1
h

∫ t+h

t
(G(t+h, t)−E)G(t, σ)f(x, σ)dσ = (G(t+ h, t)− E)

h

∫ t+h

t
G(t, σ)f(x, σ)dσ.
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Thus, using again the Lebesgue differentiation theorem in Banach spaces and the continuity
of G(t, ·) in L2(0, 1) we obtain that I2,2 converges to zero in L2(0, 1) for almost all t ∈ (0, T ].
Summing up the results we obtain that the following identity holds in L2(0, 1) for almost
all t ∈ [0, T ]

vt(x, t) = A2(t)G(t, 0)v0(x) + A2(t)
∫ t

0
G(t, σ)f(x, σ)dσ + f(x, t).

Applying formula (4.21) and the definitions of f and A2 we get that

vt(x, t) = 1
s1+α(t)

∂

∂x
Dαv(x, t) + ṡ(t)

s(t)xvx(x, t)

for almost all t ∈ [0, T ] in L2(0, 1) and we obtain the claim of lemma.

Our aim is to obtain a solution to (4.2) regular enough to satisfy the weak extremum
principle. As it will be seen in the final section, our solution u has to fulfill the following:
there exists β ∈ (α, 1) such that

for every t ∈ (0, T ) and every 0 < ε < ω < s(t) u(·, t) ∈ W 2, 1
1−β (ε, ω). (4.22)

Thus, we need to increase the space regularity of the transformed problem (4.7). The main
difficulty is that, from what we have proved by now, vx ∈ 0H

α(0, 1) but vx need not vanish
at the right endpoint of the interval. Hence, we are allowed to consider vx as an element
of the interpolation space [L2(0, 1),Dα]δ only for δ smaller than 1

2(1+α) . However, in order
to obtain higher regularity, we have to examine the behaviour of A2(t)G(t, σ)f(x, σ) more
carefully. The next lemma establishes the regularity properties of an evolution operator
G(t, σ) acting on the elements of Ha(0, 1) for a > 1

2 . At first we will discuss the case
α ∈ (1

2 , 1). Then, we will present more technical result in the case α ∈ (0, 1
2 ].

Lemma 4.4. Let us assume that α ∈ (1
2 , 1) and uσ ∈ 0H

α(0, 1). We denote by u the
solution to the equation ut = A2(t)u for 0 < x < 1, 0 ≤ σ < t < T,

u(x, σ) = uσ(x) for 0 < x < 1,
(4.23)

given by the evolution operator generated by the family A2(t). Then, for every 0 < γ < α,
for every 0 < ε < ω < 1 there exists a positive constant c = c(α, b,M, T, ε, ω, γ), where
b,M comes from (4.3), such that for every t ∈ (σ, T ] there holds

‖A2(t)u(·, t)‖Hγ(ε,ω) ≤ c(t− σ)−
1+γ
1+α ‖uσ‖0Hα(0,1) .

Proof. We note that since α > 1
2 in view of characterization (3.40) we have uσ ∈

[L2(0, 1),Dα]ν for every ν ∈ (0, 1
2(1+α)). Hence, by Theorem 3.6 u ∈ C([σ, T ];L2(0, 1)) ∩

C((σ, T ];Dα) ∩ C1((σ, T ];L2(0, 1)) and by (4.10)

‖u(·, t)‖Dα ≤ c(t− σ)ν−1 ‖uσ‖[L2(0,1),Dα]ν . (4.24)

78



4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION S.

We recall that the interpolation constant c depends on the parameters of interpolation
as well as on α, T and b,M from (4.3). However, here and henceforth we neglect this
dependency in notation and leave it just in the final results. Moreover, we note that the
constant c > 0 may change from line to line. We fix 0 < ε < ω < 1 and we set ω∗ = 1+ω

2 .
Let us discuss the approximate problem. We choose a sequence {ϕk} such that

{ϕk} ⊆ Dα, ϕk → uσ in 0H
α(0, ω∗) and ϕk → uσ in H γ̄(0, 1) for every γ̄ < 1

2 . (4.25)

Let us justify that such approximate sequence exists. We take a sequence ψk ∈ 0C
∞(0, 1)

such that ψk → uσ in 0H
α(0, 1). Then we define ϕk = ψk−ψk(1)%k, where %k is a sequence

of smooth, non-decreasing functions such that supp %k ⊆ [1− 1
k
, 1], %k(1) = 1 and |%′k| ≤ 2k.

Then, ϕk → uσ in 0H
α(0, ω∗) and ϕk ∈ Dα. We will show that ϕk → uσ in H γ̄(0, 1) for

every γ̄ < 1
2 . We note that since ψk → uσ in 0H

α(0, 1) we have ψk(1)→ uσ(1). Thus, it is
enough to show that %k → 0 in H γ̄(0, 1) for every γ̄ < 1

2 . The convergence in L2(0, 1) is
straightforward. Moreover, we may calculate∫ 1

1− 1
k

∫ x

1− 1
k

|%k(x)− %k(y)|2

|x− y|1+2γ̄ dydx ≤ 2k2
∫ 1

1− 1
k

∫ x

1− 1
k

|x− y|1−2γ̄ dydx

= k2

1− γ̄

∫ 1

1− 1
k

|x− (1− 1
k

)|2(1−γ̄)dx = k2γ̄−1

(1− γ̄)(1 + 2(1− γ̄)) → 0 as k →∞.

Hence, the existence of the sequence in (4.25) is justified. Recalling the characterization
(3.40), applying (4.10) and (4.12), we obtain that the solution to ukt = A2(t)uk for 0 < x < 1, 0 ≤ σ < t < T,

uk(x, σ) = ϕk(x) for 0 < x < 1,
(4.26)

satisfies for every 0 ≤ γ̄ < γ̄1 <
1
2∥∥∥A2(t)(u− uk)(·, t)
∥∥∥
H γ̄(0,1)

≤ c(t− σ)−1+ γ̄1−γ̄
1+α

∥∥∥uσ − ϕk∥∥∥
H γ̄1 (0,1)

. (4.27)

Hence, for every 0 ≤ γ̄ < 1
2 and every t ∈ (σ, T ]
∂

∂x
Dαuk → ∂

∂x
Dαu in H γ̄(0, 1). (4.28)

Furthermore, for k large enough and every 0 ≤ γ̄ < γ̄1 <
1
2 we have∥∥∥A2(t)uk(·, t)

∥∥∥
H γ̄(0,1)

≤ c(t− σ)−1+ γ̄1−γ̄
1+α ‖uσ‖H γ̄1 (0,1) . (4.29)

We will prove a uniform bound of the sequence {uk} in more regular spaces locally on
(0, 1). To this end, we introduce a smooth nonnegative cut-off function η such that η ≡ 0
on [0, ε2 ] ∪ [ω∗, 1], η ≡ 1 on [ε, ω]. Making use of the regularity of the sequence {uk} we
note that we may apply the operator ∂α to (4.26). Then we multiply the result by η.
Applying Proposition 2.26 we arrive at

η∂α
∂

∂x
Dαuk = − α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p)) ∂

∂x
Dαuk(p)dp+ ∂α( ∂

∂x
Dαuk · η)

= − α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p)) ∂

∂x
Dαuk(p)dp+ ∂α

∂

∂x
(ηDαuk)− ∂α(η′Dαuk).
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From Remark 2.6 we have

∂α
∂

∂x
(ηDαuk)(x, t) = ∂α

∂

∂x
(η(∂αuk(x, t)− x−α

Γ(1− α)u
k(0, t)))

= ∂α
∂

∂x
(η · ∂αuk)(x, t) + η̃(x)uk(0, t),

where we denoted

η̃ := − 1
Γ(1− α)∂

α ∂

∂x
(η · x−α).

We note that since η ≡ 0 near zero function η̃ is smooth. In view of identity (3.1) we
obtain that {uk} satisfy the system of equations (∂αuk · η)t − A2(t)(∂αuk · η) = F k for 0 < x < 1, 0 ≤ σ < t < T,

(∂αuk · η)(·, σ) = ∂αϕk · η for 0 < x < 1,
(4.30)

where

F k := 1
s1+α(t)

[
−α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p)) ∂

∂x
Dαuk(p)dp− ∂α(η′Dαuk) + η̃uk(0, t)

]
.

Let us show a uniform estimate on the L2 - norm of F k. At first, by the Sobolev embedding
we have∥∥∥η̃uk(0, t)∥∥∥

L2(0,1)
≤ c(ε, ω)

∥∥∥uk(·, t)∥∥∥
C([0,1])

≤ c(ε, ω)
∥∥∥A2(t)uk(·, t)

∥∥∥
L2(0,1)

. (4.31)

Furthermore, using (4.11) we may estimate more precisely that for any 0 < γ < 1
2 < β < 1

∣∣∣uk(0, t)∣∣∣ ≤ c
∥∥∥uk(·, t)∥∥∥

0Hβ(0,1)
≤ c(t− σ)

γ−β
1+α

∥∥∥ϕk∥∥∥
Hγ(0,1)

. (4.32)

We note that for every x, p ∈ [0, 1], x 6= p we have∣∣∣∣∣η(x)− η(p)
x− p

∣∣∣∣∣ ≤ ‖η‖W 1,∞(0,1) ,

hence,
1

Γ(1− α)

∣∣∣∣∫ x

0
(x− p)−α−1(η(x)− η(p))A2(t)uk(p)dp

∣∣∣∣ ≤ ‖η‖W 1,∞(0,1) I
1−α

∣∣∣A2(t)uk(x, t)
∣∣∣ .

Since I1−α is bounded on L2(0, 1) we obtain that∥∥∥∥∥ α

Γ(1− α)

∫ x

0
(x− p)−α−1(η(x)− η(p))A2(t)uk(p)dp

∥∥∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥A2(t)uk(·, t)

∥∥∥
L2(0,1)

.

By Proposition 2.32 we may write
1

s1+α(t)
∥∥∥∂α(η′Dαuk)

∥∥∥
L2(0,1)

≤ cα
s1+α(t)

∥∥∥(η′Dαuk)
∥∥∥

0Hα(0,1)
≤ c

s1+α(t)
∥∥∥(η′Dαuk)

∥∥∥
0H1(0,1)

≤ c

s1+α(t)
∥∥∥(η′′Dαuk)

∥∥∥
L2(0,1)

+ c

s1+α(t)

∥∥∥∥∥(η′ ∂∂xDαuk)
∥∥∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥A2(t)uk(·, t)

∥∥∥
L2(0,1)

.

Combining (4.31), the last two estimates and (4.29) we obtain that for every 0 < γ̄ < 1
2∥∥∥F k(·, t)

∥∥∥
L2(0,1)

≤ c(ε, ω)(t− σ)
γ̄

(1+α)−1 ‖uσ‖H γ̄(0,1) . (4.33)
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We will show that for every k ∈ N functions ∂αuk · η and F k satisfy the assumptions
of Proposition 2.17. By Proposition 2.16 we have uk ∈ C([σ, T ];Dα). This, together
with the continuity of function s and estimates above leads to F k ∈ C((σ, T ];L2(0, 1)) ∩
L1(σ, T ;L2(0, 1)). Due to Remark 2.6 (∂αuk ·η)(x, t) = (Dαuk ·η)(x, t)+ x−α

Γ(1−α)u
k(0, t) ·η(x)

and the last component belongs to C([σ, T ];L2(0, 1))∩C((σ, T ];Dα). Thus, it is enough to
show that Dαuk · η ∈ C([σ, T ];L2(0, 1)) ∩ C((σ, T ];Dα). At first, since uk ∈ C([σ, T ];Dα),
we have Dαuk · η ∈ C([σ, T ];L2(0, 1)) (actually it belongs to C([σ, T ]; 0H

1(0, 1))). Let us
show that Dαuk · η ∈ C((σ, T ];Dα). We note that for any 0 < β < 1 + α∥∥∥∥∥ ∂∂x(ηDαuk)(·, t)

∥∥∥∥∥
Hβ(0,1)

≤
∥∥∥η′Dαuk(·, t)

∥∥∥
Hβ(0,1)

+
∥∥∥∥∥η ∂∂xDαuk(·, t)

∥∥∥∥∥
Hβ(0,1)

.

Applying estimate (4.12) we obtain that∥∥∥∥∥ ∂∂xDαuk(·, t)
∥∥∥∥∥
Hβ(0,1)

≤
∥∥∥∥∥ ∂∂xDαuk(·, t)

∥∥∥∥∥
[L2(0,1),Dα] β

α+1

≤ c(t− σ)−
β

1+α
∥∥∥ϕk∥∥∥

Dα
(4.34)

hence, using the fact that η vanishes near zero, we have
∂

∂x
(ηDαuk) ∈ L∞loc((σ, T ]; 0H

β(0, 1)) for every 0 < β < α + 1. (4.35)
Moreover for every σ < τ, t ≤ T∥∥∥ηDαuk(·, t)− ηDαuk(·, τ)

∥∥∥2

Dα

=
∥∥∥ηDαuk(·, t)− ηDαuk(·, τ)

∥∥∥2

L2(0,1)
+
∥∥∥∥∥ ∂∂x(ηDαuk)(·, t)− ∂

∂x
(ηDαuk)(·, τ)

∥∥∥∥∥
2

0Hα(0,1)
.

We have already shown that the first norm tends to zero as τ → t. We apply the
interpolation estimate ([19, Corollary 1.2.7.]) to the second term. Then, we have∥∥∥∥∥ ∂∂x(ηDαuk)(·, t)− ∂

∂x
(ηDαuk)(·, τ)

∥∥∥∥∥
2

0Hα(0,1)

≤ c

∥∥∥∥∥ ∂∂x(ηDαuk)(·, t)− ∂

∂x
(ηDαuk)(·, τ)

∥∥∥∥∥
α
β

0Hβ(0,1)

∥∥∥∥∥ ∂∂x(ηDαuk)(·, t)− ∂

∂x
(ηDαuk)(·, τ)

∥∥∥∥∥
1−α

β

L2(0,1)

for every α < β < 1 + α. We note that, by (4.35), for every σ < τ, t ≤ T the first
norm is bounded while the second tends to zero as τ → t because uk ∈ C([σ, T ];Dα).
Hence, Dαuk · η ∈ C((σ, T ];Dα). Furthermore, Dαukt · η ∈ C((σ, T ];L2(0, 1)). Indeed,
A2(t)uk ∈ C((σ, T ];L2(0, 1)) and by (4.34) A2(t)uk ∈ L∞loc((σ, T ];Hβ(0, 1)) for every
β ∈ (0, α + 1). Thus, applying again interpolation estimate, in particular we obtain that
A2(t)uk ∈ C((σ, T ];H1(0, 1)) and hence ukt ∈ C((σ, T ];H1(0, 1)) which implies Dαukt · η ∈
C((σ, T ];L2(0, 1)). Applying the Sobolev embedding we obtain that ukt (0, t) ∈ C((σ, T ])
and hence

∂αukt · η = Dαukt · η + x−α

Γ(1− α)η · u
k
t (0, t)

belongs to C((σ, T ];L2(0, 1)). Finally, we may apply Proposition 2.17 to obtain that
∂αuk · η satisfies the integral identity

(∂αuk · η)(x, t) = G(t, σ)(∂αϕk · η)(x) +
∫ t

σ
G(t, τ)F k(x, τ)dτ, (4.36)
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where {G(t, τ), σ ≤ τ ≤ t ≤ T} denotes an evolution operator generated by the family
A2(t). We fix γ ∈ (0, 1 + α), then∥∥∥(∂αuk · η)(·, t)

∥∥∥
[L2,Dα] γ

1+α

≤
∥∥∥G(t, σ)(∂αϕk · η)

∥∥∥
[L2,Dα] γ

1+α

+
∫ t

σ

∥∥∥G(t, τ)F k(·, τ)
∥∥∥

[L2,Dα] γ
1+α

dτ

and we apply estimate (4.11) to obtain∥∥∥(∂αuk · η)(·, t)
∥∥∥
Hγ(0,1)

≤ c(t−σ)−
γ

1+α
∥∥∥∂αϕk · η∥∥∥

L2(0,1)
+c

∫ t

σ
(t−τ)−

γ
1+α

∥∥∥F k(·, τ)
∥∥∥
L2(0,1)

dτ.

Using the estimate (4.33) we get that for every 0 < γ̄ < 1
2 there holds∥∥∥(∂αuk · η)(·, t)

∥∥∥
Hγ(0,1)

≤ c(t− σ)−
γ

1+α
∥∥∥∂αϕk∥∥∥

L2(0,ω∗)
+ c(ε, ω)

∫ t

σ
(t− τ)−

γ
1+α (τ − σ)

γ̄
1+α−1dτ ‖uσ‖H γ̄(0,1) .

Applying Remark 2.6 together with the estimate (4.32) and (4.25), we obtain that for
every 1

2 < γ < 1 + α there holds∥∥∥(Dαuk · η)(·, t)
∥∥∥
Hγ(0,1)

≤ c(ε, ω)[(t− σ)−
γ

1+α ‖uσ‖0Hα(0,ω∗) + (t− σ)
γ̄−γ
1+α ‖uσ‖0H γ̄(0,1)].

Since γ is arbitrary number from the interval (1
2 , 1 + α), the estimate above implies the

following: for every γ1 < α∥∥∥∥∥( ∂∂xDαuk · η)(·, t)
∥∥∥∥∥
Hγ1 (0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α ‖uσ‖0Hα(0,1) .

Recalling that η ≡ 1 on [ε, ω] we obtain the uniform estimate∥∥∥∥∥( ∂∂xDαuk)(·, t)
∥∥∥∥∥
Hγ1 (ε,ω)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α ‖uσ‖0Hα(0,1) .

Hence, in view of (4.28) we get that for every t ∈ (σ, T ]
∂

∂x
Dαuk ⇀

∂

∂x
Dαu in Hγ1(ε, ω).

Furthermore, by weak lower semi-continuity of the norm, we arrive at the estimate: for
every 0 < γ1 < α, for every t ∈ (σ, T ) there holds∥∥∥∥∥ ∂∂xDαu(·, t)

∥∥∥∥∥
Hγ1 (ε,ω)

≤ c(t− σ)−
γ1+1
1+α ‖uσ‖0Hα(0,1) ,

where c = c(α, b,M, ε, ω, T, γ1). This together with (4.3) finishes the proof.

Now, we present a more technical result which is necessary to increase the regularity
of solutions in the case 0 < α ≤ 1

2 .

Lemma 4.5. Let 0 < α ≤ 1
2 . Let us assume that uσ ∈ Hβ

loc(0, 1) ∩ H γ̄(0, 1), where
1
2 < β < 1 and 0 < γ̄ < 1

2 are fixed. We denote by u the solution to the equation ut = A2(t)u for 0 < x < 1, 0 ≤ σ < t < T,

u(x, σ) = uσ(x) for 0 < x < 1,
(4.37)

given by the evolution operator generated by the family A2(t). Then, for every max{β −
α, β − γ̄} < β1 < β, for every 0 < ε < ω < 1, there exists a positive constant c =
c(α, b,M, T, ε, ω, β, β1), such that for every t ∈ (σ, T ] there holds

‖A2(t)u(·, t)‖Hβ1 (ε,ω) ≤ c(t− σ)−
β1−β+α+1

1+α (‖uσ‖Hβ( ε2 ,
1+ω

2 ) + ‖uσ‖H γ̄(0,1)).
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Proof. We will modify the proof of Lemma 4.4. At first we fix 0 < ε < ω < 1 and we set
ω∗ = 1+ω

2 . We choose a sequence {ϕk} ⊆ Dα such that

ϕk(0) = 0, ϕk → uσ in Hβ(ε/2, ω∗) and ϕk → uσ in H γ̄(0, 1). (4.38)

Let us justify that such sequence exists. Let us take a sequence {Φk} ⊆ C∞[ε/2, ω∗]
such that Φk → uσ in Hβ(ε/2, ω∗), a sequence {Φk

1} ⊆ C∞0 [0, ε/2] such that Φk
1 → uσ in

H γ̄(0, ε/2) and a sequence {Φk
2} ⊆ C∞0 [ω∗, 1] such that Φk

2 → uσ in H γ̄(ω∗, 1). Then let us
define

ϕk(x) =


Φk

1 + ρk1 if x ∈ [0, ε/2)
Φk if x ∈ [ε/2, ω∗]
Φk

2 + ρk2 if x ∈ (ω∗, 1],

where the sequences {ρk1} and {ρk1} are defined as follows. {ρk1} is a sequence of smooth
functions such that ρk1 ≡ 0 on [0, ε2 −

1
k
], ρk1(ε/2) = Φk(ε/2), d−

dx
ρk1(ε/2) = d+

dx
Φk(ε/2)

and d2−

dx2 ρ
k
1(ε/2) = d2+

dx2 Φk(ε/2). Analogously, {ρk2} is a sequence of smooth functions such
that ρk2 ≡ 0 on [w∗ + 1

k
, 1] and ρk2(ω∗) = ϕk(ω∗), d+

dx
ρk2(ω∗) = d−

dx
Φk(ω∗) and d2+

dx2 ρ
k
2(ω∗) =

d2−

dx2 Φk(ω∗). Since for k large enough there hold
∣∣∣Φk(ε/2)

∣∣∣ ≤ 2 |uσ(ε/2)| and
∣∣∣Φk(ω∗)

∣∣∣ ≤
2 |uσ(ω∗)|, we note that ρk1 and ρk2 may be chosen in such a way that there exists c > 0
such that

∣∣∣ d
dx
ρk1
∣∣∣ ≤ ck and

∣∣∣ d
dx
ρk2
∣∣∣ ≤ ck. We note that from the construction {ϕk} ⊆ Dα.

The convergence of ϕk to uσ in Hβ(ε/2, ω∗) is straightforward, while the convergence in
H γ̄(0, 1) follows from the fact that ρk1 → 0 in H γ̄(0, ε/2) and ρk2 → 0 in H γ̄(ω∗, 1). The
two last convergence to zero may be shown as in the proof of Lemma 4.4.

As in the proof of Lemma 4.4, we obtain that the solution to ukt = A2(t)uk for 0 < x < 1, 0 ≤ σ < t < T,

uk(x, σ) = ϕk(x) for 0 < x < 1,
(4.39)

satisfies for every 0 ≤ γ̄1 < γ̄∥∥∥A2(t)(u− uk)(·, t)
∥∥∥
H γ̄1 (0,1)

≤ c(t− σ)−1+ γ̄−γ̄1
1+α

∥∥∥uσ − ϕk∥∥∥
H γ̄(0,1)

and for every t ∈ (σ, T ]
∂

∂x
Dαuk → ∂

∂x
Dαu in H γ̄1(0, 1). (4.40)

Moreover, for k large enough and every 0 ≤ γ̄1 < γ̄ we get∥∥∥A2(t)uk(·, t)
∥∥∥
H γ̄1 (0,1)

≤ c(t− σ)−1+ γ̄−γ̄1
1+α ‖uσ‖H γ̄(0,1) . (4.41)

We introduce a smooth nonnegative function η ≡ 0 on [0, ε/2]∪ [ω∗, 1], η ≡ 1 on [ε, ω]. By
regularity of the solutions to approximate problem (4.39) we note that we may apply the
operator ∂β to (4.39). Then we multiply the result by η. Making use of Proposition 2.26
we may calculate as follows

η∂β
∂

∂x
Dαuk = − β

Γ(1− β)

∫ x

0
(x− p)−β−1(η(x)− η(p)) ∂

∂x
Dαuk(p)dp+ ∂β( ∂

∂x
Dαuk · η).
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Using Proposition 2.30 together with the fact that (Dβuk)(0, t) = 0 we obtain the following
sequence of identities

∂

∂x
Dαuk = ∂α

∂

∂x
uk = ∂αD1−βDβuk = D1+α−βDβuk = ∂1+α−βDβuk.

We apply again Proposition 2.26 to get

∂1+α−βDβuk · η = β − α− 1
Γ(β − α)

∫ x

0
(x− p)β−α−2(η(x)− η(p))Dβuk(p)dp+D1+α−β(ηDβuk).

Hence,

∂β( ∂
∂x
Dαuk·η) = ∂β

β − α− 1
Γ(β − α)

∫ x

0
(x−p)β−α−2(η(x)−η(p))Dβuk(p)dp+∂βD1+α−β(ηDβuk).

We note that by Definition 2.18, identity (2.15) and Proposition 2.22 we may write

∂βD1+α−β(ηDβuk) = ∂

∂x
I1−βIβ−α

∂

∂x
(ηDβuk) = ∂

∂x
I1−α ∂

∂x
(ηDβuk) = ∂α

∂

∂x
(ηDβuk).

Applying Remark 2.6 we obtain further

∂βD1+α−β(ηDβuk) = ∂α
∂

∂x
(η∂βuk)−∂α ∂

∂x
(η· x−β

Γ(1− β)u
k(0, t)) = ∂α

∂

∂x
(η∂βuk)+uk(0, t)η̃,

where η̃ := −∂α ∂
∂x

(η · x−β

Γ(1−β)) is smooth. Summing up the results, if we apply the operator
∂β to (4.39) and multiply the obtained identity by η we arrive at (∂βuk · η)t − A2(t)(∂βuk · η) = F k for 0 < x < 1, 0 ≤ σ < t < T,

(∂βuk · η)(·, σ) = ∂βϕk · η for 0 < x < 1,
(4.42)

where

F k := − 1
s1+α(t)

β

Γ(1− β)

∫ x

0
(x− p)−β−1(η(x)− η(p)) ∂

∂x
Dαuk(p)dp

+ 1
s1+α(t)

β − α− 1
Γ(β − α) ∂

β
∫ x

0
(x− p)β−α−2(η(x)− η(p))Dβuk(p)dp+ uk(0, t) η̃

s1+α(t) =:
3∑
i=1

F k
i .

We will prove a uniform estimate on the L2-norm of F k. For a sake of clarity we neglect
in notation the dependance in c of other constants then ω, ε. At first, we note that as in
the proof of (4.33), by continuity of fractional integral in L2 we obtain∥∥∥F k

1 (·, t)
∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥A2(t)uk

∥∥∥
L2(0,1)

.

To estimate F k
2 we note that

s1+α(t) Γ(β − α)
β − α− 1Γ(1−β)F k

2 = ∂

∂x

∫ x

0
(x− p)−β

∫ p

0
(p− τ)β−α−2(η(p)− η(τ))Dβuk(τ)dτdp

= ∂

∂x

∫ x

0
Dβuk(τ)

∫ x

τ
(x− p)−β(p− τ)β−α−2(η(p)− η(τ))dpdτ =

 p = τ + w(x− τ)
dp = (x− τ)dw


= ∂

∂x

∫ x

0
Dβ−αDαuk(τ)(x− τ)−α−1

∫ 1

0
(1− w)−βwβ−α−2(η(τ + w(x− τ))− η(τ))dwdτ

= ∂

∂x

∫ x

0

∫ τ

0

(τ − p)α−β
Γ(1− β + α)

∂

∂x
Dαuk(p)dp(x− τ)−α−1

∫ 1

0

(η(τ + w(x− τ))− η(τ))
(1− w)βw2+α−β dwdτ,

where in the third identity we used the fact that Dαuk(0, t) = 0 and Proposition 2.30.
Applying the Fubini theorem and the substitution τ = p+ a(x− p) we obtain further

s1+α(t) Γ(β − α)
β − α− 1Γ(1− β)F k

2 = 1
Γ(1− β + α)

∂

∂x

∫ x

0

∂

∂x
Dαuk(p)(x− p)−βH(x, p)dp,
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where

H(x, p)=
∫ 1

0
aα−β(1−a)−α−1

∫ 1

0

η(p+ a(x− p) + w(x− p)(1− a))− η(p+ a(x− p))
(1− w)βw2+α−β dwda.

We note that for every a, w, p, x ∈ (0, 1), p 6= x we have∣∣∣∣∣(η(p+ a(x− p) + w(x− p)(1− a))− η(p+ a(x− p)))
(x− p)(1− a)w

∣∣∣∣∣ ≤ ‖η‖W 1,∞(0,1) . (4.43)

Hence, denoting by B(·, ·) the Beta function we may estimate as follows∣∣∣(x− p)−βH(x, p)
∣∣∣ ≤ ‖η‖W 1,∞(0,1) |x− p|

1−β
∫ 1

0
aα−β(1− a)−αda

∫ 1

0
(1− w)−βwβ−α−1dw

(4.44)
= |x− p|1−β B(1− α, α− β + 1)B(1− β, β − α)→ 0 as p→ x.

Having in mind that ∂
∂x
Dαuk is bounded with respect to space for any t ∈ (σ, T ) and

applying estimate (4.43), it is not difficult to pass with differentiation under the integral sign
by virtue of the Lebesgue dominated convergence theorem. Thus, performing differentiation
we arrive at the following identity

s1+α(t) Γ(β − α)
β − α− 1Γ(1− β)Γ(1− β + α)F k

2

=
∫ x

0

∂

∂x
Dαuk(p)(x− p)−β ∂

∂x
H(x, p)dp− β

∫ x

0

∂

∂x
Dαuk(p)(x− p)−βH(x, p)

x− p
dp.

We note that
∂

∂x
H(x, p) =

∫ 1

0
aα−β(1−a)−α

∫ 1

0
(1−w)−βwβ−α−1η′(p+a(x− p) +w(x− p)(1−a))dwda

+
∫ 1

0
a1+α−β(1− a)−α−1

∫ 1

0

η′(p+ a(x− p) + w(x− p)(1− a))− η′(p+ a(x− p))
(1− w)βw2+α−β dwda.

Hence, applying (4.43) to η′ we obtain∣∣∣∣∣ ∂∂xH(x, p)
∣∣∣∣∣ ≤ c ‖η‖W 2,∞(0,1) .

This together with estimate (4.44) leads to∣∣∣∣∣ ∂∂xH(x, p)
∣∣∣∣∣+

∣∣∣∣∣H(x, p)
x− p

∣∣∣∣∣ ≤ c(ε, ω) for every 0 ≤ p < x ≤ 1.

Finally,∥∥∥F k
2 (·, t)

∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥I1−β

∣∣∣A2(t)uk
∣∣∣∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥A2(t)uk(·, t)

∥∥∥
L2(0,1)

.

To estimate F k
3 it is enough to apply the Sobolev embedding∥∥∥η̃uk(0, t)∥∥∥

L2(0,1)
≤ c(ε, ω)

∥∥∥uk(·, t)∥∥∥
C([0,1])

≤ c(ε, ω)
∥∥∥A2(t)uk(·, t)

∥∥∥
L2(0,1)

.

Moreover, similarly as in estimate (4.32) for every 1
2 < δ < 1 + α we have∣∣∣uk(0, t)∣∣∣ ≤ c(t− σ)

γ̄−δ
1+α

∥∥∥ϕk∥∥∥
H γ̄(0,1)

. (4.45)

Summing up the estimates for F k
i , i = 1, 2, 3 and applying (4.41) we obtain that∥∥∥F k(·, t)

∥∥∥
L2(0,1)

≤ c(ε, ω)(t− σ)
γ̄

1+α−1 ‖uσ‖H γ̄(0,1) . (4.46)
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We will show that F k and ∂βuk · η satisfy the assumptions of Proposition 2.17. Since uk ∈
C([σ, T ];Dα) by continuity of s and estimate above we obtain that F k ∈ L1(σ, T ;L2(0, 1))∩
C((σ, T ];L2(0, 1)). Furthermore, ∂βuk · η ∈ C([σ, T ];L2(0, 1)). Let us check that ∂βuk · η ∈
C((σ, T ];Dα). Again, since ∂βuk · η = Dβuk · η + x−α

Γ(1−α)u
k(0, t) · η, it is enough to check

the regularity of Dβuk · η.
From ϕk ∈ Dα and estimate (4.12) we infer that

A2(t)uk ∈ L∞loc((σ, T ];Hγ(0, 1)) for every 0 < γ < 1 + α. (4.47)

At first, we will show the following estimate∥∥∥ηDβuk(·, t)
∥∥∥
Dα
≤ c(ε, ω)

∥∥∥∥∥ ∂∂xDαuk(·, t)
∥∥∥∥∥
Hβ(0,1)

for every t ∈ (σ, T ]. (4.48)

We note that in the following calculations we may replace uk(·, t) with the difference
uk(·, t)− uk(·, τ) for any τ, t ∈ (σ, T ]. Applying Poincaré inequality we have∥∥∥ηDβuk

∥∥∥
Dα
≤
∥∥∥∥∥ ∂∂x(ηDβuk)

∥∥∥∥∥
0Hα(0,1)

=
∥∥∥η′Dβuk

∥∥∥
0Hα(0,1)

+
∥∥∥∥∥η ∂∂xDβuk

∥∥∥∥∥
0Hα(0,1)

. (4.49)

With the first term we deal as follows. We apply Proposition 2.32 together with Proposi-
tion 2.30 and the fact that Dαuk(0, t) = 0 to get∥∥∥η′Dβuk

∥∥∥
0Hα(0,1)

≤ c
∥∥∥∂α(η′Dβ−αDαuk)

∥∥∥
L2(0,1)

≤
∥∥∥η′∂αDβ−αDαuk

∥∥∥
L2(0,1)

+ α

Γ(1− α)

∥∥∥∥∫ x

0
(x− p)−α−1(η′(x)− η′(p))Dβuk(p)dp

∥∥∥∥
L2(0,1)

.

We note that in the last inequality we applied Proposition 2.26. By the continuity of
fractional integral in L2 we obtain that∥∥∥∥∫ x

0
(x− p)−α−1(η′(x)− η′(p))Dβuk(p)dp

∥∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥Dβuk

∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥ukx∥∥∥L2(0,1)

.

Furthermore, from Proposition 2.30 we infer that∥∥∥η′∂αDβ−αDαuk
∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥DβDαuk

∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥∥∥ ∂∂xDαuk

∥∥∥∥∥
L2(0,1)

.

Hence, we arrive at ∥∥∥η′Dβuk
∥∥∥

0Hα(0,1)
≤ c(ε, ω)

∥∥∥∥∥ ∂∂xDαuk
∥∥∥∥∥
L2(0,1)

. (4.50)

Let us now focus on the last term in (4.49). Applying Proposition 2.30, the fact that
Dαuk(0, t) = 0 and Remark 2.7 we obtain the following sequence of identities

∂

∂x
Dβuk = ∂

∂x
Dβ−αDαuk = ∂β−α∂1−(β−α)Dβ−αDαuk = ∂β−α

∂

∂x
Dαuk.

Hence, by Proposition 2.26

η
∂

∂x
Dβuk = α− β

Γ(1− (α− β))

∫ x

0
(x− p)α−β η(x)− η(p)

x− p
∂

∂x
Dαuk(p)dp+ ∂β−α(η ∂

∂x
Dαuk).

(4.51)
In order to estimate the Hα-norm of the second term on the r.h.s we apply Proposition 2.32
and Proposition 2.30 in the following way∥∥∥∥∥∂β−α(η ∂

∂x
Dαuk)

∥∥∥∥∥
0Hα(0,1)

≤ c

∥∥∥∥∥∂αDβ−α(η ∂
∂x
Dαuk)

∥∥∥∥∥
L2(0,1)
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= c

∥∥∥∥∥Dβ(η ∂
∂x
Dαuk)

∥∥∥∥∥
L2(0,1)

≤ c

∥∥∥∥∥η ∂∂xDαuk
∥∥∥∥∥

0Hβ(0,1)
. (4.52)

Let us denote
Jk ≡

∫ x

0
(x− p)α−β η(x)− η(p)

x− p
∂

∂x
Dαuk(p)dp.

We will estimate the norm of Jk in the space 0H
α(0, 1). In view of Proposition 2.32, it is

enough to estimate the L2- norm of ∂αJk. We may calculate as follows

Γ(1− α)∂αJk = ∂

∂x

∫ x

0
(x− p)−α

∫ p

0
(p− τ)α−β−1(η(p)− η(τ)) ∂

∂x
Dαuk(τ)dτdp

= ∂

∂x

∫ x

0

∂

∂x
Dαuk(τ)

∫ x

τ
(x−p)−α(p− τ)α−β−1(η(p)−η(τ))dpdτ =

 p = τ + w(x− τ)
dp = (x− τ)dw


= ∂

∂x

∫ x

0

∂

∂x
Dαuk(τ)(x− τ)−β

∫ 1

0
(1− w)−αwα−β−1(η(τ + w(x− τ))− η(τ))dwdτ.

We note that we may differentiate under the integral sign. Indeed,

|η(τ + w(x− τ))− η(τ)| ≤ ‖η‖W 1,∞(0,1)w(x− τ) for every w ∈ (0, 1), 0 ≤ τ < x ≤ 1.

Hence, ∣∣∣∣∣ ∂∂xDαuk(τ)(x− τ)−β
∫ 1

0
(1− w)−αwα−β−1(η(τ + w(x− τ))− η(τ))dw

∣∣∣∣∣
≤ ‖η‖W 1,∞(0,1)B(1− α, 1 + α− β)

∣∣∣∣∣ ∂∂xDαuk(τ)(x− τ)1−β
∣∣∣∣∣→ 0 as τ → x−.

Recalling that ∂
∂x
Dαuk is bounded with respect to space for any positive time, we may

apply the Lebesgue dominated convergence theorem to obtain that

Γ(1− α)∂αJk =
∫ x

0

∂

∂x
Dαuk(τ)(x− τ)−β

∫ 1

0
(1− w)−αwα−βη′(τ + w(x− τ))dwdτ

−β
∫ x

0

∂

∂x
Dαuk(τ)(x− τ)−β−1

∫ 1

0
(1− w)−αwα−β−1(η(τ + w(x− τ))− η(τ))dw.

Estimating the L2- norm of expression above we arrive at∥∥∥Jk∥∥∥
0Hα(0,1)

≤ c ‖η‖W 1,∞(0,1)

∥∥∥∥∥I1−β
∣∣∣∣∣ ∂∂xDαuk

∣∣∣∣∣
∥∥∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥∥∥ ∂∂xDαuk

∥∥∥∥∥
L2(0,1)

, (4.53)

where we applied boundedness of fractional integral in L2. Combining the last estimate
together with (4.50) and (4.52) we obtain (4.48). Applying (4.48) on a difference uk(·, t)−
uk(·, τ) together with interpolation estimate [19, Corollary 1.2.7.] we obtain that for every
β < γ < 1 + α there holds∥∥∥ηDβ(uk(·, t)− uk(·, τ))

∥∥∥
Dα
≤ c(ε, ω)

∥∥∥∥∥ ∂∂xDα(uk(·, t)− uk(·, τ))
∥∥∥∥∥
Hβ(0,1)

≤ c(ε, ω)
∥∥∥∥∥ ∂∂xDα(uk(·, t)− uk(·, τ))

∥∥∥∥∥
β
γ

Hγ(0,1)

∥∥∥∥∥ ∂∂xDα(uk(·, t)− uk(·, τ))
∥∥∥∥∥

1−β
γ

L2(0,1)
.
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The second term tends to zero as τ → t while the first one is bounded for σ < τ, t ≤ T

due to (4.47). Hence, we have shown that Dβuk ∈ C((σ, T ];Dα) and thus ∂βuk · η ∈
C((σ, T ];Dα). It remains to prove ∂βukt · η ∈ C((σ, T ];L2(0, 1)). From Proposition 2.26 we
infer that

∂βukt · η = ∂β(ukt · η)− β

1− β

∫ x

0
(x− p)−β−1(η(x)− η(p))ukt (p)dp

We note that for every τ, t ∈ (σ, T )∥∥∥∥∫ x

0
(x− p)−β−1(η(x)− η(p))[ukt (p, t)− ukt (p, τ)]dp

∥∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥ukt (·, t)− ukt (·, τ)

∥∥∥
L2(0,1)

and the last expression tends to zero as τ → t because ukt ∈ C((σ, T ];L2(0, 1)). Applying
Proposition 2.32 we obtain for every τ, t ∈ (σ, T )∥∥∥∂β(ukt · η)(·, t)− ∂β(ukt · η)(·, τ)

∥∥∥
L2(0,1)

≤ c
∥∥∥η(ukt (·, t)− ukt (·, τ))

∥∥∥
0Hβ(0,1)

.

The last term tends to zero as τ → t for τ, t positive. Indeed, since A2(t)uk = ukt , it
is enough to apply the interpolation estimate together with (4.47) and the fact that
A2(t)uk ∈ C([σ, T ];L2(0, 1)). Hence, we have shown that ∂βukt · η ∈ C((σ, T ];L2(0, 1)).
Finally, we are able to apply Proposition 2.17 to deduce that ∂βuk · η satisfies the integral
identity

(∂βuk · η)(x, t) = G(t, σ)(∂βϕk · η) +
∫ t

σ
G(t, τ)F (x, τ)dτ, (4.54)

where {G(t, τ), σ ≤ τ ≤ t ≤ T} denotes an evolution operator generated by the family
A2(t). We fix γ ∈ (0, 1 + α), then we may write∥∥∥(∂βuk · η)(·, t)

∥∥∥
[L2,Dα] γ

1+α

≤
∥∥∥G(t, σ)(∂βϕk · η)

∥∥∥
[L2,Dα] γ

1+α

+
∫ t

σ
‖G(t, τ)F (·, τ)‖[L2,Dα] γ

1+α
dτ.

Hence, by estimate (4.11) we have∥∥∥(∂βuk · η)(·, t)
∥∥∥
Hγ(0,1)

≤ c(t−σ)−
γ

1+α
∥∥∥∂βϕk · η∥∥∥

L2(0,1)
+c

∫ t

σ
(t−τ)−

γ
1+α

∥∥∥F k(·, τ)
∥∥∥
L2(0,1)

dτ.

Applying (4.46) we obtain that ∥∥∥(∂βuk · η)(·, t)
∥∥∥
Hγ(0,1)

≤ c(t− σ)−
γ

1+α
∥∥∥∂βϕk · η∥∥∥

L2(0,1)
+ c(ε, ω)

∫ t

σ
(t− τ)−

γ
1+α (τ − σ)

γ̄
1+α−1dτ ‖uσ‖H γ̄(0,1) .

We note that by Proposition (2.26) we have

∂βϕk · η = − β

Γ(1− β)

∫ x

0
(x− p)−β η(x)− η(p)

x− p
ϕk(p)dp+ ∂β(ϕk · η).

Hence, ∥∥∥∂βϕk · η∥∥∥
L2(0,1)

≤ c(ε, ω)
∥∥∥ϕk∥∥∥

L2(0,1)
+
∥∥∥ϕkη∥∥∥

0Hβ(0,1)

and by (4.38) ∥∥∥∂βϕk · η∥∥∥
L2(0,1)

≤ c(ε, ω)(‖uσ‖Hβ( ε2 ,ω∗)
+ ‖uσ‖L2(0,1)).

Thus, we get that∥∥∥(∂βuk · η)(·, t)
∥∥∥
Hγ(0,1)

≤ c(ε, ω)[(t−σ)−
γ

1+α (‖uσ‖Hβ( ε2 ,ω∗)
+‖uσ‖L2(0,1))+(t−σ)

γ̄−γ
1+α ‖uσ‖H γ̄(0,1)].
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Since γ is an arbitrary number from the interval (0, 1 + α), the estimate above implies the
following: for every γ1 < α∥∥∥∥∥ ∂∂x(∂βuk · η)(·, t)

∥∥∥∥∥
Hγ1 (0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α (‖uσ‖Hβ( ε2 ,ω∗)

+ ‖uσ‖H γ̄(0,1)).

Applying Remark 2.6 and the estimate (4.45) we obtain∥∥∥∥∥ ∂∂x(Dβuk · η(·, t))
∥∥∥∥∥
Hγ1 (0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α (‖uσ‖Hβ( ε2 ,ω∗)

+ ‖uσ‖H γ̄(0,1))

and in view of (4.41) and (4.50) we have∥∥∥∥∥ ∂∂xDβuk · η(·, t)
∥∥∥∥∥
Hγ1 (0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α (‖uσ‖Hβ( ε2 ,ω∗)

+ ‖uσ‖H γ̄(0,1)). (4.55)

We will show that this leads to∥∥∥∥∥η ∂∂xDαuk(·, t)
∥∥∥∥∥
Hβ1 (0,1)

≤ c(ε, ω)(t− σ)−
β1−β+α+1

1+α (‖uσ‖Hβ( ε2 ,ω∗)
+ ‖uσ‖H γ̄(0,1)) (4.56)

for every max{β − α, β − γ̄} < β1 < β and where c = c(α, b,M, T, ε, ω, β1, β). Indeed,
making use of estimates (4.41), (4.53) and (4.55) in identity (4.51) we obtain that for any
max{0, α− γ̄} < γ1 < α there holds∥∥∥∥∥∂β−α(η ∂

∂x
Dαuk)

∥∥∥∥∥
Hγ1 (0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α (‖uσ‖Hβ( ε2 ,ω∗)

+ ‖uσ‖H γ̄(0,1)).

Hence, for any max{0, α− γ̄} < γ1 < α we have∥∥∥∥∥∂γ1Dβ−α(η ∂
∂x
Dαuk)

∥∥∥∥∥
L2(0,1)

≤ c(ε, ω)(t− σ)−
γ1+1
1+α (‖uσ‖Hβ( ε2 ,ω∗)

+ ‖uσ‖H γ̄(0,1)).

Taking γ1 = β1−β+α, where max{β− γ̄, β−α} < β1 < β and applying Proposition 2.30
and Proposition 2.32 we arrive at (4.56). Estimate (4.56), together with the weak lower
semi-continuity of the norm finishes the proof.

Finally, we are able to improve the space regularity of solutions to (4.7). We decompose
interval (0, 1) as follows

(0, 1) =
( ∞⋃
k=1

( 1
k + 1 ,

1
k

])
\ {1}.

Then, for each α ∈ (0, 1) we may choose k ∈ N \ {0} such that α ∈ ( 1
k+1 ,

1
k
]. We will

discuss separately the case for each k ∈ N \ {0}. The proof for α ∈ (1
2 , 1) requires just one

step, however for α ∈ ( 1
k+1 ,

1
k
] we need to repeat the reasoning k times.

Lemma 4.6. Let us assume that v0 ∈ Dα, α ∈ (0, 1). We choose k ∈ N \ {0} such
that α ∈ ( 1

k+1 ,
1
k
]. Then, for every γk ∈ (α, (k + 1)α) the solution to (4.7) obtained in

Theorem 4.2 satisfies

v ∈ L∞loc(0, T ;Hγk+1
loc (0, 1)) and ∂αvx ∈ L∞loc(0, T ;Hγk−α

loc (0, 1)). (4.57)

Furthermore,

v ∈ L
1+α
kα (0, T ;Hγk+1

loc (0, 1)) and ∂αvx ∈ L
1+α
kα (0, T ;Hγk−α

loc (0, 1)).
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Proof. Let us denote δ = α
α+1 in the case α 6= 1

2 and for α = 1
2 by δ we mean any number

from the interval (0, 1
3). We apply the operator A2(t) to (4.21), where f is defined in (4.18),

and estimate its norm in an interpolation space. Firstly, we consider the case α ∈ (1
2 , 1).

In this case, from Theorem 4.2 we deduce that f ∈ L∞(0, T ; 0H
(1+α)δ(0, 1)). Thus, by

Lemma 4.4 we obtain for any 0 < ε < ω < 1 and any 0 < θ < δ∥∥∥∥A2(t)
∫ t

0
G(t, σ)f(·, σ)dσ

∥∥∥∥
H(1+α)θ(ε,ω)

≤
∫ t

0
‖A2(t)G(t, σ)f(·, σ)‖H(1+α)θ(ε,ω) dσ

≤
∫ t

0

c

(t− σ)1+θ−δ ‖f(·, σ)‖
0H(1+α)δ(0,1) dσ ≤

cT δ−θ

δ − θ
‖f‖L∞(0,T ;0Hα(0,1)) ,

where the constant c > 0 comes from Lemma 4.4. By the regularity of the initial condition
and estimate (4.12) we have

‖A2(t)G(t, 0)v0‖H(1+α)θ(0,1) ≤
c

tθ
‖v0‖Dα .

Thus, in view of formula (4.14), we get that for every 0 < γ < α

A2(t)v ∈ L∞loc(0, T ;Hγ
loc(0, 1)), A2(t)v ∈ L

α+1
α (0, T ;Hγ

loc(0, 1)),

taking into account (4.3), this leads to

∂αvx ∈ L∞loc(0, T ;Hγ
loc(0, 1)), ∂αvx ∈ L

α+1
α (0, T ;Hγ

loc(0, 1)).

Applying Lemma 2.34 we obtain that

vx ∈ L∞loc(0, T ;Hγ+α
loc (0, 1)) and vx ∈ L

α+1
α (0, T ;Hγ+α

loc (0, 1)),

which finishes the proof in the case α ∈ (1
2 , 1).

In the case α ≤ 1
2 , by Theorem 4.2, we have f ∈ L∞(0, T ; [L2,Dα]δ). Thus, by (4.12), we

obtain that for any θ < δ∥∥∥∥A2(t)
∫ t

0
G(t, σ)f(·, σ)dσ

∥∥∥∥
[L2(0,1),Dα]θ

≤
∫ t

0
‖A2(t)G(t, σ)f(·, σ)‖[L2(0,1),Dα]θ dσ

≤
∫ t

0

c

(t− σ)1+θ−δ ‖f(·, σ)‖[L2(0,1),Dα]δ dσ ≤
cT δ−θ

δ − θ
‖f‖L∞(0,T ;0Hα(0,1)) .

This together with the estimate

‖A2(t)G(t, 0)v0‖[L2(0,1),Dα]θ ≤
c

tθ
‖v0‖Dα

and formula (4.21), implies that for every 0 < θ < δ

A2(t)v ∈ L∞loc(0, T ; [L2(0, 1),Dα]θ) = L∞loc(0, T ;H(1+α)θ(0, 1)).

Hence, in view of (4.3)

∂αvx ∈ L∞loc(0, T ;Hγ0(0, 1)) for every γ0 ∈ (0, α).

Applying Corollary 2.33 we obtain that

‖vx(·, t)‖0Hγ1 (0,1) ≤ ct−
α
α+1 ‖v0‖Dα for every γ1 < 2α. (4.58)

Let us denote δ1 = γ1
1+α . We will discuss firstly the case α ∈ (1

4 ,
1
2 ]. We note that by (4.58)

‖f(·, t)‖H(1+α)δ1 (0,1) ≤ ct−
α
α+1 ‖v0‖Dα .
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Applying Lemma 4.5, we obtain for every 0 < ε < ω < 1 and every θ < δ1

‖A2(t)v(·, t)‖H(1+α)θ(ε,ω) ≤
c

tθ
‖v0‖Dα +

∫ t

0
‖A2(t)G(t, σ)f(·, σ)‖H(1+α)θ(ε,ω) dσ

≤ c

tθ
‖v0‖Dα + c

∫ t

0
σ−

α
α+1 (t− σ)−1−θ+δ1dσ ‖v0‖Dα

and we arrive at

A2(t)v ∈ L∞loc(0, T ;H(1+α)θ
loc (0, 1)), A2(t)v ∈ L

α+1
2α (0, T ;H(1+α)θ

loc (0, 1)) for every θ < δ1.

Thus,

∂αvx ∈ L∞loc(0, T ;Hγ1
loc(0, 1)), ∂αvx ∈ L

α+1
2α (0, T ;Hγ1

loc(0, 1)) for every γ1 < 2α.

Applying Lemma 2.34 we get that

vx ∈ L∞loc(0, T ;Hγ2
loc(0, 1)), vx ∈ L

α+1
2α (0, T ;Hγ2

loc(0, 1)) for every γ2 < 3α.

In this way we proved the lemma for α ∈ (1
3 , 1). Let us suppose that α ∈ (1

4 ,
1
3 ], since

f ∈ Lα+1
2α (0, T ;Hγ2

loc(0, 1)∩H γ̄(0, 1)) for every 0 < γ̄ < 1
2 , we apply Lemma 4.5 with β = γ2

together with Lemma 2.34 and we obtain that

∂αvx ∈ L∞loc(0, T ;Hγ2
loc(0, 1)) and vx ∈ L∞loc(0, T ;Hγ3

loc(0, 1)) for every γ3 < 4α.

In general case, we proceed as follows. For α ∈ ( 1
k+1 ,

1
k
], k ≥ 2 we apply to (4.21) the

estimate (4.12) with δn = γn
α+1 , γn < (n + 1)α for n = 0, . . . , dk−1

2 e − 1. In this way we
obtain that

vx ∈ L∞loc(0, T ; 0H
γd(k−1)/2e(0, 1)) (4.59)

and
‖f(·, t)‖Hγd(k−1)/2e (0,1) ≤ ct−

γd(k−1)/2e
α+1 ‖v0‖Dα .

Then we apply to (4.21) Lemma 4.5 together with Lemma 2.34 dk2e times with β = γn for
n = dk−1

2 e, . . . , k − 1 to obtain

∂αvx ∈ L∞loc(0, T ;Hγk−1
loc (0, 1)), vx ∈ L∞loc(0, T ;Hγk

loc(0, 1)), vx ∈ L
α+1
kα (0, T ;Hγk

loc(0, 1)),

which finishes the proof.

In Theorem 4.2 we have obtained the solution to (4.7) belonging to C([0, T ];Dα). By
Lemma 4.6 we may deduce local continuity of the solution with values in more regular
spaces. We establish this result in the following corollary.

Corollary 4.7. Let us assume that v0 ∈ Dα. Let v be a solution to (4.7) given by
Theorem 4.2. Let α ∈ (0, 1), we choose k ∈ N \ {0} such that α ∈ ( 1

k+1 ,
1
k
]. Then, for every

α < γk < (k + 1)α there holds

v ∈ C((0, T ];Hγk+1
loc (0, 1)) and ∂αvx ∈ C((0, T ];Hγk−α

loc (0, 1)). (4.60)

Furthermore,

vx ∈ C((0, T ]; 0C[0, 1]) for α ∈ (0, 1
2] and vx ∈ C([0, T ]; 0C[0, 1]) for α ∈ (1

2 , 1). (4.61)
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Proof. Theorem 4.2 states that v ∈ C([0, T ];Dα). Since for arbitrary 0 < ε < ω < 1 and
for every α < γk < γk < (k + 1)α there holds

Hγk+1(ε, ω) = [H1+α(ε, ω), Hγk+1(ε, ω)] γk−α
γk−α

,

we may estimate by the interpolation theorem ([19, Corollary 1.2.7])

‖v(·, t)− v(·, τ)‖Hγk+1(ε,ω) ≤ c ‖v(·, t)− v(·, τ)‖
1− γk−α

γk−α
Dα ‖v(·, t)− v(·, τ)‖

γk−α
γk−α

Hγk+1(ε,ω) ,

where c = c(γk, γk, ε). By Lemma 4.6, the second norm on the right hand side above is
bounded on every compact interval contained in (0, T ], while the first tends to zero as
τ → t for t, τ ∈ [0, T ].
In order to obtain the claim for ∂αvx we recall that by Theorem 4.2 we have ∂αvx ∈
C([0, T ];L2(0, 1)). Applying again the interpolation theorem we obtain for every 0 < ε <

ω < 1, 0 < τ < t ≤ T and every α < γk < γk < (k + 1)α

‖∂αvx(·, t)− ∂αvx(·, τ)‖Hγk−α(ε,ω)

≤ c(γk, γk, α) ‖∂αvx(·, t)− ∂αvx(·, τ)‖
1− γk−α

γk−α
L2(0,1) ‖∂

αvx(·, t)− ∂αvx(·, τ)‖
γk−α
γk−α

Hγk−α(ε,ω) .

The first norm tends to zero as τ → t, while the second one is bounded on every compact
interval contained in (0, T ] due to Lemma 4.6. This way we proved (4.60). The continuity
of vx in the case α ∈ (1

2 , 1) follows by the Sobolev embedding from v ∈ C([0, T ],Dα). In
the case α ∈ (0, 1

2 ] we recall that vx ∈ C([0, T ];L2(0, 1)) and by (4.59) there exists γ > 1
2

such that vx ∈ L∞loc(0, T ; 0H
γ(0, 1)). Hence, applying again an interpolation argument

together with Sobolev embedding, we arrive at (4.61).

Corollary 4.8. Let us assume that v0 ∈ Dα. Let v be a solution to (4.7) given by
Theorem 4.2. Then, for every α ∈ (0, 1) there exists β ∈ (α, 1) such that for every
0 < ε < ω < 1 there holds v ∈ C((0, T ];W 2, 1

1−β (ε, ω)).

Proof. In the case α ∈ (0, 1
2) it is enough to notice that in view of Corollary 4.7 we have

v ∈ C((0, T ];H2(ε, ω)) for every 0 < ε < ω < 1. In the case α ∈ [1
2 , 1) the claim follows

from Corollary 4.7 by the Sobolev embedding.

4.1.3. The existence and regularity of solutions to (4.2)

At last, we are ready to formulate and prove the result concerning a unique existence and
regularity of solution to (4.2).
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Theorem 4.9. Let b, T > 0 and α ∈ (0, 1). Let us assume that s satisfies (4.3). We
further assume, that u0 ∈ H1+α(0, b), u′0 ∈ 0H

α(0, b) and u0(b) = 0. Then, there exists a
unique solution u to (4.2) such that u,Dαu ∈ C(Qs,T ), ut, ∂

∂x
Dαu ∈ C(Qs,T ) and for every

t ∈ [0, T ] ux(·, t) ∈ 0H
α(0, s(t)). Moreover, in the case α ∈ (1

2 , 1) ux ∈ C(Qs,T ), while in
the case α ∈ (0, 1

2 ] ux ∈ C(Qs,T \ ({t = 0} × [0, b])). Furthermore, the boundary conditions
(4.2)2 are satisfied for every t ∈ (0, T ]. Finally, there exists β ∈ (α, 1) such that for every
t ∈ (0, T ] and every 0 < ε < ω < s(t) we have u(·, t) ∈ W 2, 1

1−β (ε, ω).

Proof. Firstly we will establish the results concerning the existence and regularity of
solution to (4.7) and then, we will rewrite the results in terms of properties of solution to
(4.2). We note that, under assumptions concerning regularity and traces of u0 we obtain
that v0 defined in (4.6) belongs to Dα. Hence, there exists v a unique solution to (4.7)
with the regularity given by Theorem 4.2, Lemma 4.3, Lemma 4.6 and Corollary 4.7.
Since v ∈ C([0, T ];Dα), by the Sobolev embedding we obtain that v ∈ C([0, T ]× [0, 1]).
Furthermore, from Corollary 4.8 we know that there exists β ∈ (α, 1) such that v ∈
C((0, T ];W 2, 1

1−β (ε, ω)) for every 0 < ε < ω < 1.
We define the function u on Qs,T by the formula u(x, t) = v( x

s(t) , t). Since v ∈ C([0, T ]×
[0, 1]), we obtain that u ∈ C(Qs,T ) and v ∈ C((0, T ];W 2, 1

1−β (ε, ω)) implies u(·, t) ∈
W 2, 1

1−β (ε, ω) for every t ∈ (0, T ] and every 0 < ε < ω < s(t). We note that vp(p, t) =
s(t)ux(x, t). Hence, from (4.61) we obtain that ux ∈ C(Qs,T ) in the case α ∈ (1

2 , 1), for
α ∈ (0, 1

2 ] we get ux ∈ C(Qs,T \ ({t = 0} × [0, b])) and for α ∈ (0, 1) we have ux(0, t) = 0
for every t ∈ (0, T ]. Furthermore,

ut(x, t) = ∂

∂x
Dαu(x, t) = 1

s1+α(t)
∂

∂p
Dαv(p, t) where p = x

s(t) .

From Corollary 4.7 and the Sobolev embedding we may deduce that ∂αvp = ∂
∂p
Dαv ∈

C((0, T ]× (0, 1)), which implies ∂
∂x
Dαu, ut ∈ C(Qs,T ). Finally, v ∈ C([0, T ];Dα) implies

that u(t, s(t)) = 0 and ux(·, t) ∈ 0H
α(0, s(t)) for every t ∈ [0, T ]. Hence, by (2.15) and

Proposition 2.32 we obtain that for every t ∈ [0, T ] there holds Dαu(·, t) ∈ 0H
1(0, s(t)) ⊆

AC[0, s(t)]. Moreover, from the Sobolev embedding we infer that Dαv ∈ C([0, T ]× [0, 1])
and since Dαu(x, t) = 1

sα(t)D
αv(p, t) we obtain that Dαu ∈ C(Qs,T ). The uniqueness

of solution follows from the energy estimate. If we assume that u with the regularity
described above satisfies (4.2) with u0 ≡ 0, then multiplying (4.2)1 by u and integrating
over Qs,T we arrive at∫ T

0

∫ s(τ)

0
ut(x, τ) · u(x, τ)dxdτ −

∫ T

0

∫ s(τ)

0

∂

∂x
Dαu(x, τ) · u(x, τ)dxdτ = 0.

Applying the estimate (3.12) we get

1
2

∫ T

0

∫ s(τ)

0

d

dt
|u(x, τ)|2 dxdτ + cα

∫ T

0
‖u(·, τ)‖2

H
1+α

2 (0,1)(0,s(τ))
dτ ≤ 0.
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By the Fubini theorem we obtain that
1
2

∫ s(T )

0
|u(x, T )|2 dx+ cα

∫ T

0
‖u(·, τ)‖2

H
1+α

2 (0,1)(0,s(τ))
dτ ≤ 0

and hence u ≡ 0, which finishes the proof.

4.2. A solution to Stefan problem

Before we prove the existence and uniqueness of the solution to Stefan problem, we
need to derive the weak extremum principle for the system (4.2).

4.2.1. Extremum principles

We will begin with the auxiliary lemmas. Firstly, we will present an extended version
of [13, Lemma 1] (see also [18, Theorem 1]).

Lemma 4.10. Let us assume that f : [0, L] → R is absolutely continuous on [0, L] and
for every ε ∈ (0, L) it belongs to W 1, 1

1−β (ε, L) for some β ∈ (0, 1]. Then for any α ∈ (0, β)
Dαf is continuous on (0, L) and

1. if f attains its local maximum at the point x0 ∈ (0, L], which is a global maximum on
[0, x0], then for every α ∈ (0, β) there holds the inequality (Dαf)(x0) ≥ 0. Furthermore,
if f is not constant on [0, x0], then (Dαf)(x0) > 0.

2. If f attains its local minimum at the point x0 ∈ (0, L], which is a global minimum on
[0, x0], then for every α ∈ (0, β) there holds the inequality (Dαf)(x0) ≤ 0. Furthermore,
if f is not constant on [0, x0], then (Dαf)(x0) < 0.

Proof. Let us begin with the proof of the continuity of Dαf . To this end, we fix α ∈ (0, β)
and we take x1, x ∈ (0, L). Let us assume that x1 < x. The case x < x1 may be shown
analogously. We note that

Γ(1− α) |(Dαf)(x)− (Dαf)(x1)| =
∣∣∣∣∫ x

0
(x− p)−αf ′(p)dp−

∫ x1

0
(x1 − p)−αf ′(p)dp

∣∣∣∣
≤
∫ x

x1
(x− p)−α |f ′(p)| dp+

∫ x1

0
[(x1 − p)−α − (x− p)−α] |f ′(p)| dp.

The second term tends to zero as x→ x1 because∫ x1

0
(x− p)−α |f ′(p)| dp→

∫ x1

0
(x1 − p)−α |f ′(p)| dp

as x→ x1 by the Lebesgue monotone convergence theorem. The first term also converges
to zero because∣∣∣∣∫ x

x1
(x− p)−αf ′(p)dp

∣∣∣∣ ≤ ‖f ′‖
L

1
1−β (x1,x)

(∫ x

x1
(x− p)−

α
β dp

)β
→ 0 as x→ x1.
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Thus, the continuity of Dαf on (0, L) is proven. Let us assume that f attains its local
maximum at the point x0 ∈ (0, L], which is a global maximum on [0, x0]. We define the
function g(x) := f(x0)− f(x) for x ∈ [0, L]. We note that g(x) ≥ 0 on [0, x0], g(x0) = 0
and (Dαg)(x) = −(Dαf)(x) for x ∈ [0, L]. For every 0 < ε < x ≤ x0 we may estimate g
as follows

g(x) ≤
∫ x0

x
|g′(p)| dp ≤ ‖g′‖

L
1

1−β (ε,L)
|x− x0|β . (4.62)

Thus, for fixed α ∈ (0, β), applying the integration by parts formula, we get

(Dαg)(x0) = 1
Γ(1− α)

∫ x0

0
(x0 − p)−αg′(p)dp

= 1
Γ(1− α) lim

p→x−0
(x0 − p)−αg(p)− x−α0 g(0)

Γ(1− α) −
α

Γ(1− α)

∫ x0

0
(x0 − p)−α−1g(p)dp.

From the estimate (4.62) we infer that the limit equals zero, hence

(Dαg)(x0) = − x−α0 g(0)
Γ(1− α) −

α

Γ(1− α)

∫ x0

0
(x0 − p)−α−1g(p)dp. (4.63)

Thus (Dαg)(x0) ≤ 0, which is equivalent with (Dαf)(x0) ≥ 0. Furthermore, from the
formula (4.63) we obtain that if f is not a constant function on [0, x0] then (Dαf)(x0) > 0.
Substituting f by −f we obtain the second part of the claim.

In the next lemma we will show that ∂
∂x
Dαf is non positive in the maximum point

of f in the interior of the interval. This result, under stronger regularity assumptions,
was proven in [22, Lemma 2.2]. Here we present the proof, where we do not demand C2

regularity of f .

Lemma 4.11. Let f : [0, L] → R be an absolutely continuous function such that f ′ ∈
W 1, 1

1−β (ε, L) for every ε > 0 and for fixed β ∈ (0, 1). Then for α ∈ (0, β) ∂
∂x
Dαf is

continuous on (0, L) and

1. if f attains its local maximum at x0 ∈ (0, L) which is a global maximum on [0, x0],
then ( ∂

∂x
Dαf)(x0) ≤ 0 for every α ∈ (0, β). Furthermore, if f is not constant on [0, x0],

then ( ∂
∂x
Dαf)(x0) < 0.

2. If f attains its local minimum at x0 ∈ (0, L) which is a global minimum on [0, x0], then
( ∂
∂x
Dαf)(x0) ≥ 0 for every α ∈ (0, β). Furthermore, if f is not constant on [0, x0],

then ( ∂
∂x
Dαf)(x0) > 0.

Proof. Let us begin with the proof of continuity of ∂
∂x
Dαf . To this end, we fix α ∈ (0, β)

and we take x1, x ∈ (0, L). Let us assume that x1 < x. The case x < x1 may be shown
analogously. We note that for every 0 < ε < y < L there holds

Γ(1− α)( ∂
∂x
Dαf)(y) = ∂

∂y

∫ ε

0
(y − p)−αf ′(p)dp+ ∂

∂y

∫ y

ε
(y − p)−αf ′(p)dp

= −α
∫ ε

0
(y − p)−α−1f ′(p)dp+

∫ y

ε
(y − p)−αf ′′(p)dp.
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Hence, taking arbitrary ε ∈ (0, x1) we obtain that

Γ(1− α)
∣∣∣∣∣ ∂∂xDαf(x)− ∂

∂x
Dαf(x1)

∣∣∣∣∣ ≤ α
∫ ε

0
[(x1 − p)−α−1 − (x− p)−α−1] |f ′(p)| dp

+
∫ x

x1
(x− p)−α |f ′′(p)| dp+

∫ x1

ε
[(x1 − p)−α − (x− p)−α] |f ′′(p)| dp.

The first term tends to zero as x → x1 because the convergence under the integral is
uniform. The third term tends to zero because∫ x1

ε
(x− p)−α |f ′′(p)| dp→

∫ x1

ε
(x1 − p)−α |f ′′(p)| dp

as x→ x1 by the Lebesgue monotone convergence theorem. At last, the second term also
converges to zero because∣∣∣∣∫ x

x1
(x− p)−αf ′′(p)dp

∣∣∣∣ ≤ ‖f ′′‖
L

1
1−β (x1,x)

(∫ x

x1
(x− p)−

α
β dp

)β
→ 0 as x→ x1.

Thus, the continuity of ∂
∂x
Dαf on (0, L) is proven. We will prove only the part of

the claim concerning maximum, because the proof of the second part of the claim is
analogous. We define g(x) = f(x0)− f(x). Then g is nonnegative on [0, x0], g′(x0) = 0
and ∂

∂x
Dαg = − ∂

∂x
Dαf . We note that for every 0 < ε < x ≤ x0 we may estimate

|g′(x)| ≤
∫ x0

x
|g′′(p)| dp ≤ ‖g′′‖

L
1

1−β (ε,L)
|x− x0|β (4.64)

and
g(x) ≤

∫ x0

x
|g′(p)| dp ≤

∫ x0

x

∫ x0

p
|g′′(r)| drdp

≤ ‖g′′‖
L

1
1−β (ε,L)

∫ x0

x
|p− x0|β dp = ‖g′′‖

L
1

1−β (ε,L)

|x− x0|β+1

β + 1 . (4.65)

Making use of these estimates we may differentiate under the integral sign as follows

( ∂
∂x
Dαg)(x0) = 1

Γ(1− α)

(
∂

∂x

∫ x

0
(x− p)−αg′(p)dp

)
(x0)

= 1
Γ(1− α) lim

p→x−0
(x0 − p)−αg′(p)−

α

Γ(1− α)

∫ x0

0
(x0 − p)−α−1g′(p)dp.

and the limit is equal to zero by the estimate (4.64). Applying integration by parts we
obtain further

( ∂
∂x
Dαg)(x0) = − α

Γ(1− α)

∫ x0

0
(x0 − p)−α−1g′(p)dp = − α

Γ(1− α) lim
p→x−0

(x0 − p)−α−1g(p)

+ α

Γ(1− α)x
−α−1
0 g(0) + α(α + 1)

Γ(1− α)

∫ x0

0
(x0 − p)−α−2g(p)dp.

By (4.65) the limit equals zero, hence we arrive at

( ∂
∂x
Dαg)(x0) = α

Γ(1− α)x
−α−1
0 g(0) + α(α + 1)

Γ(1− α)

∫ x0

0
(x0 − p)−α−2g(p)dp

and
( ∂
∂x
Dαg)(x0) ≥ 0, which implies ( ∂

∂x
Dαf)(x0) ≤ 0.

Furthermore, from the formula above, we obtain that if f is not a constant function on
[0, x0] then ( ∂

∂x
Dαf)(x0) < 0.
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Having proven Lemma 4.11, it is not difficult to deduce the weak extremum principle
for parabolic-type problems involving ∂

∂x
Dα.

Lemma 4.12 (Weak extremum principle). Let s fulfills the assumption (4.3). We assume
that u satisfies

ut −
∂

∂x
Dαu = f in Qs,T

and has the following regularity u ∈ C(Qs,T ), ut ∈ C(Qs,T ), u(·, t) ∈ AC[0, s(t)] for every
t ∈ (0, T ), ∂

∂x
Dαu ∈ C(Qs,T ). Furthermore, for every t ∈ (0, T ), for every 0 < ε < ω < s(t)

we have u(·, t) ∈ W 2, 1
1−β (ε, ω) for some β ∈ (α, 1]. Let us denote the parabolic boundary

of Qs,T by ∂Γs,T = ∂Qs,T \ ({T} × (0, s(T ))). Then,

1. if f ≤ 0, then u attains its maximum on ∂Γs,T .
2. If f ≥ 0, then u attains its minimum on ∂Γs,T .

Proof. The proof follows the standard argument for the linear parabolic equations. Firstly,
we will prove the first part of the lemma. Let us assume that at some point (x0, t0) ∈
Qs,T \ ∂Γs,T we have u(x0, t0) > max∂Γs,T u =: M. We fix ε > 0 and we denote v(x, t) =
(u(x, t)−M)e−εt Then v attains its positive maximum in some point (x1, t1) ∈ Qs,T \∂Γs,T .
We may calculate

vt = ute
−εt − εv, ∂

∂x
Dαv = e−εt

∂

∂x
Dαu.

Thus
vt −

∂

∂x
Dαv = −εv + fe−εt.

In particular

vt(x1, t1)− ∂

∂x
Dαv(x1, t1) = −εv(x1, t1) + f(x1, t1)e−εt1 < 0.

Since (x1, t1) is a maximum point we have vt(x1, t1) ≥ 0 and by Lemma 4.11 we infer that
∂
∂x
Dαv(x1, t1) ≤ 0. Hence, vt(x1, t1)− ∂

∂x
Dαv(x1, t1) ≥ 0, which leads to a contradiction.

Setting u := −u we obtain the second part of the claim.

It is possible to relax the regularity assumptions in the statement above. We will also
make use of the following version of the weak extremum principle.

Proposition 4.13. [12] Let us assume that s fulfills the assumption (4.3), u ∈ C(Qs,T ),
u(·, t) ∈ AC[0, s(t)] for every t ∈ (0, T ), ∂

∂x
Dαu ∈ C(Qs,T ), ut ∈ L∞(Qs,T ) and for every

t ∈ (0, T ), for every 0 < ε < ω < s(t) we have u(·, t) ∈ W 2, 1
1−β (ε, ω) for some β ∈ (α, 1].

If u satisfies
ut −

∂

∂x
Dαu = f a.a. in Qs,T ,

where f ≤ 0 a.a. on Qs,T , then u attains its maximum on ∂Γs,T . In the case f ≥ 0 a.a.
on Qs,T , u attains its minimum on ∂Γs,T .
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Proof. We will consider only the case f ≤ 0, because the case f ≥ 0 is analogous. Let us
assume that at some point (x0, t0) ∈ Qs,T \ ∂Γs,T we have u(x0, t0) > max∂Γs,T u =: M. We
fix ε > 0 and we denote v(x, t) = (u(x, t)−M)e−εt. Then v attains its positive maximum
in some point (x1, t1) ∈ Qs,T \ ∂Γs,T . We note that v satisfies

vt(x, t)−
∂

∂x
Dαv(x, t) = −εv + f(x, t)e−εt a.e on Qs,T .

Since v(x1, t1) > 0 and v is continuous we obtain that there exist δ > 0 and a > 0 such
that

εv(x, t) ≥ 2δ for every (x, t) ∈ [x1 − a, x1 + a]× [t1 − a, t1].

Applying Lemma 4.11 we obtain that − ∂
∂x
Dαv(x1, t1) ≥ 0. By continuity of ∂

∂x
Dαv in

Qs,T we infer that there exists b ∈ (0, a) such that for every b1, b2 ∈ (0, b) there holds

− ∂

∂x
Dαv ≥ −δ on [x1 − b1, x1 + b1]× [t1 − b2, t1].

Thus,

εv − ∂

∂x
Dαv ≥ δ on [x1 − b1, x1 + b1]× [t1 − b2, t1].

We integrate this inequality on the cube [x1 − b1, x1 + b1]× [t1 − b2, t1] and we arrive at

2δb1b2 ≤
∫ x1+b1

x1−b1

∫ t1

t1−b2
εv(x, t)− ∂

∂x
Dαv(x, t)dtdx =

∫ x1+b1

x1−b1

∫ t1

t1−b2
−vt(x, t)+f(x, t)e−εtdtdx.

Recalling that f ≤ 0 a.a. on Qs,T we obtain that

2δb1b2 ≤
∫ x1+b1

x1−b1

∫ t1

t1−b2
−vt(x, t)dtdx =

∫ x1+b1

x1−b1
v(x, t1 − b2)− v(x, t1)dx.

We divide the inequality by 2b1 to get that

δb2 ≤
1

2b1

∫ x1+b1

x1−b1
v(x, t1 − b2)− v(x, t1)dx.

Passing with b1 to zero we arrive at

δb2 ≤ v(x1, t1 − b2)− v(x1, t1),

which is a contradiction with the fact that (x1, t1) is a maximum point of v.

4.2.2. Estimates

In the next two lemmas, we derive the bounds for the Caputo derivative of the solution
to (4.2) and for the solution itself. This is a significant step in the proof of the existence
of solution to (4.1).

Lemma 4.14. Let us assume that the assumptions of Theorem 4.9 are satisfied and addi-
tionally u0 ≥ 0. Let u be a solution to (4.2) given by Theorem 4.9, then (Dαu)(s(t), t) ≤ 0.
Furthermore, if u0 6≡ 0, then for every t ∈ (0, T ] we have (Dαu)(s(t), t) < 0.
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Proof. We note that by Theorem 4.9 we have Dαu ∈ C(Qs,T ), hence Dαu(s(t), t) is well
defined and continuous on [0, T ]. Furthermore, function u satisfies the assumptions of
Lemma 4.12. Hence, it attains its minimum on the parabolic boundary. In order to show
that the minimum is attained on the curve (s(t), t) we introduce uε = u− εx. Then uε
satisfies 

uεt − ∂
∂x
Dαuε = εx−α

Γ(1−α) in Qs,T ,

uεx(0, t) = −ε, uε(s(t), t) = −εs(t) for t ∈ (0, T ),
uε(x, 0) = u0(x)− εx for 0 < x < b.

From Lemma 4.12 we deduce that uε also attains its minimum on the parabolic boundary.
Since uε,x(0, t) < 0 the minimum cannot be attained on the left boundary. Thus, we obtain
that

uε(x, t) ≥ min{u0(x)− εx,−εs(t)} ≥ −εs(t),

where we used the assumption u0 ≥ 0. Hence, u(x, t) = uε(x, t) + εx ≥ −εs(t). Passing to
the limit with ε we obtain that u ≥ 0. Hence, u attains its minimum, which is equal to zero,
on the curve (s(t), t). Applying the minimum principle in spatial dimension (Lemma 4.10),
we obtain that (Dαu)(s(t), t) ≤ 0 for every t ∈ [0, T ].

It remains to show that if u0 6≡ 0, then (Dαu)(s(t), t) < 0 for every t ∈ (0, T ]. Let us
firstly establish the following lemma.

Lemma 4.15. Let u be a nonnegative solution to ut − ∂
∂x
Dαu = 0 in Qs,T , where s

satisfies (4.3). We assume that u has the following regularity u ∈ C(Qs,T ), ut ∈ C(Qs,T ),
u(·, t) ∈ AC[0, s(t)] for every t ∈ (0, T ), ∂

∂x
Dαu ∈ C(Qs,T ). Furthermore, for every

t ∈ (0, T ), for every 0 < ε < ω < s(t) we have u(·, t) ∈ W 2, 1
1−β (ε, ω) for some β ∈ (α, 1].

Let t0 ∈ (0, T ] be fixed. Then if u(s(t0), t0) = 0, then either (Dαu)(s(t0), t0) < 0 or u ≡ 0
on Qs,t0.

Proof. In the proof we will employ the ideas introduced in [1, Appendix 2, Lemma 2.1]. We
note that since u is nonnegative, u attains its minimum in (s(t0), t0). Hence, by Lemma 4.10
we infer that either (Dαu)(s(t0), t0) < 0 or u(x, t0) = 0 for every x ∈ [0, s(t0)]. We will
show that the last condition leads to u ≡ 0 on Qs,t0 . We will proceed by contradiction.
Let us assume that u 6≡ 0 on Qs,t0 . Then, by continuity of u, we may choose 0 < t1 < t0,
x1 ∈ (0, s(t1)) and small δ > 0, such that u(x, t1) > 0 for every x belonging to [x1, x1 + 2δ].
We introduce a nonnegative auxiliary function η : [0, x1 + 2δ]× [t1, t0]→ R as follows

η(x, t) =

 0 on [0, x1]× [t1, t0],
εe−a(t−t1)[δ2 − (x− x1 − δ)2]2 on (x1, x1 + 2δ]× [t1, t0],

where the constant a > 0 will be chosen later and ε > 0 is such that

ε[δ2 − (x− x1 − δ)2]2 ≤ u(x, t1) for every x ∈ (x1, x1 + 2δ).
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Such a choice of ε > 0 is possible, if δ > 0 is small, due to the continuity of u and the
fact that u(x1, t1) > 0. Since η(x1, t) = ηx(x1, t) = 0, it is easy to notice that η satisfies
regularity assumptions of Lemma 4.12 on [0, x1 + 2δ]× [t1, t0]. Furthermore, we have

η(0, t) = 0, η(x1 + 2δ, t) = 0 for every t ∈ [t1, t0]. (4.66)

By the assumption concerning ε and the fact that u is nonnegative, there holds

η(x, t1) ≤ u(x, t1) for every x ∈ [0, x1 + 2δ]. (4.67)

Our aim is to apply the weak minimum principle, obtained in Lemma 4.12, to the function
w := u− η. To this end, we will show that for suitably chosen a > 0 we have

−ηt + ∂

∂x
Dαη ≥ 0 in (0, x1 + 2δ)× (t1, t0]. (4.68)

At first we note that, by the definition of η we have

−ηt + ∂

∂x
Dαη ≡ 0 on (0, x1]× (t1, t0].

We note that for x > x1 we may write

( ∂
∂x
Dαη)(x, t) = 1

Γ(1− α)
∂

∂x

∫ x

x1
(x− p)−αηx(p, t)dp =: ( ∂

∂x
Dα
x1η)(x, t).

In order to calculate ∂
∂x
Dα
x1η we note that ηx(x1, t) = 0, thus ∂

∂x
Dα
x1η = Dα

x1ηx. Let us
perform the calculations. We have

ηx(x, t) = −4εe−a(t−t1)[δ2 − (x− x1 − δ)2](x− x1 − δ)

and
ηxx(x, t) = −4εe−a(t−t1)(δ2 − 3(x− x1 − δ)2).

Thus, we may write
∂

∂x
Dα
x1η = 4εe−a(t−t1)

Γ(1− α)

[
3
∫ x

x1
(x− p)−α(p− x1 − δ)2dp− δ2

∫ x

x1
(x− p)−αdp

]
.

Calculating the last integral we obtain, that for (x, t) ∈ (x1, x1 + 2δ)× (t1, t0) there holds

−ηt + ∂

∂x
Dαη =

εe−a(t−t1)
(
a[δ2 − (x− x1 − δ)2]2 + 4

Γ(1− α)

[
3
∫ x

x1

(p− x1 − δ)2

(x− p)α dp− δ2(x− x1)1−α

1− α

])
.

(4.69)
We will show that the last expression is nonnegative for every (x, t) ∈ (x1, x1 + 2δ)× (t1, t0)
for suitably chosen a > 0. At first, we note that

κα := 1
2− α

3−
√

3
√

1 + α

3− α

 > 1 for every α ∈ (0, 1). (4.70)

Let us introduce
ωα,δ := 2δ(κα − 1)

κα
. (4.71)

We will consider three cases.
1. Let x ∈ [x1 + 1

3δ, x1 + 2δ − ωα,δ]. Then,

[δ2 − (x− x1 − δ)2]2 ≥ [δ2 − (δ − ωα,δ)2]2 and (x− x1)1−α ≤ (2δ − ωα,δ)1−α .
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Thus, for a ≥ 4δ2

Γ(2−α)
(2δ−ωα,δ)1−α

[δ2−(δ−ωα,δ)2]2 we have

a[δ2 − (x− x1 − δ)2]2 ≥ 4δ2(x− x1)1−α

Γ(2− α)
and the expression (4.69) is nonnegative.
2. If x ∈ (x1, x1 + 1

3δ], we may notice that (x− (x1 + δ))2 ≥ 4
9δ

2 and thus

3
∫ x

x1
(x− p)−α(p− x1 − δ)2dp ≥ 34δ2

9

∫ x

x1
(x− p)−αdp = 4δ2

3
(x− x1)1−α

1− α ,

which ensures that (4.69) is nonnegative.
3. It remains to deal with the case x ∈ [x1 + 2δ−ωα,δ, x1 + 2δ). We apply the substitution
p = x1 + r(x− x1) to obtain that

3
∫ x

x1
(x− p)−α(p− x1 − δ)2dp = 3

∫ 1

0
(1− r)−α(r(x− x1)− δ)2dr(x− x1)1−α.

Thus, it is enough to prove that for each x ∈ [x1 + 2δ − ωα,δ, x1 + 2δ]

3
∫ 1

0
(1− r)−α(r(x− x1)− δ)2dr ≥ δ2

1− α,

which is equivalent with

3
∫ 1

0
(1− r)−αr2dr(x− x1)2 − 6δ

∫ 1

0
(1− r)−αrdr(x− x1) + 2δ2

1− α ≥ 0.

Calculating the above integrals and dividing the inequality by 2 we have
δ2

1− α − 3δ(x− x1)Γ(1− α)
Γ(3− α) + 3(x− x1)2 Γ(1− α)

Γ(4− α) ≥ 0.

Multiplying this inequality by Γ(2−α)
Γ(1−α) we obtain another equivalent inequality

δ2 − 3(x− x1)
2− α δ + 3(x− x1)2

(2− α)(3− α) ≥ 0.

By direct calculations we see that the roots of the function

f(δ) := δ2 − 3(x− x1)
2− α δ + 3(x− x1)2

(2− α)(3− α)
are given by the formula

δ∓ = (x− x1)
2(2− α)

3∓
√

3
√

1 + α

3− α

 .
Thus, it is enough to show that δ ≤ δ− for every choice of x ∈ [x1 + 2δ − ωα,δ, x1 + 2δ].
Recalling the definitions (4.70) and (4.71), we have

δ− = κα
(x− x1)

2 ≥ κα
2δ − ωα,δ

2 = δ.

In this way we have shown that (4.69) is nonnegative for x ∈ [x1 + 2δ − ωα,δ, x1 + 2δ).
Summing up the result, we obtained that (4.69) is nonnegative for every x ∈ (x1, x1 + 2δ)
and, as a consequence, (4.68) holds.
Let us define w = u− η. Then, applying (4.66), (4.67), (4.68) we obtain that

wt − ∂
∂x
Dα
x1w ≥ 0 in (0, x1 + 2δ)× (t1, t0],

w(0, t) = u(0, t) ≥ 0, w(x1 + 2δ, t) = u(x1 + 2δ, t) ≥ 0 for t ∈ [t1, t0],
w(x, t1) ≥ 0 for x ∈ [0, x1 + 2δ].
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Obviously Lemma 4.12 is true also if we consider a problem in a cylindrical domain, thus we
may apply the minimum principle, to obtain that w attains its minimum on the parabolic
boundary of [0, x1 + 2δ]× [t1, t0]. Thus, w ≥ 0 in [0, x1 + 2δ]× [t1, t0]. In particular

u(x, t0) ≥ η(x, t0) = εe−a(t0−t1)[δ2 − (x− x1 − δ)2]2 > 0 for every x ∈ (x1, x1 + 2δ).

This is a contradiction with u(x, t0) = 0 on [0, s(t0)]. Thus, we obtained that u ≡ 0
in Qs,t0 .

From Lemma 4.15 we infer that Dαu(s(t0), t0) < 0, because otherwise we obtain a
contradiction with u0 6≡ 0 and the continuity of u. In this way we proved Lemma 4.14.

Lemma 4.16. Let us assume that u0 ≥ 0 satisfies the assumptions of Theorem 4.9. We
assume further that there exists M > 0 such that

u0(x) ≤ MΓ(2− α)
b1−α (b− x) for every x ∈ [0, b]. (4.72)

Moreover, let s fulfill the assumption (4.3), where the constant M comes from (4.72). If u
is a solution to (4.2) given by Theorem 4.9, then there hold the following bounds

(Dαu)(s(t), t) ≥ −M for every t ∈ (0, T ) (4.73)

and
0 ≤ u(x, t) ≤MΓ(2− α)sα−1(t)(s(t)− x) for (x, t) ∈ Qs,T . (4.74)

Remark 4.2. We note that in the case α ∈ (1
2 , 1) the assumption (4.72) is trivial, since

from u0 ∈ H1+α(0, 1) follows that u0 is Lipschitz continuous.

Proof. In the proof we follow the ideas introduced in [1, Proposition 4.2], where the author
consider the classical Stefan problem. Let us denote by u a solution to (4.2) given by
Theorem 4.9. We define an auxiliary function v by the formula

v(x, t) = M0s
α−1(t)(s(t)− x),

where M0 = MΓ(2− α). Then we may calculate

(Dαv)(s(t), t) = −M0s
α−1(t)

Γ(1− α)

∫ s(t)

0
(s(t)− p)−αdp = − M0

Γ(2− α) = −M.

Moreover, making use of (4.72) we obtain

v(s(t), t) = 0, vx(x, t) = −M0s
α−1(t) < 0 = ux(0, t), v(x, 0) = M0

b1−α (b− x) ≥ u0(x).

We may calculate further

vt(x, t) = M0αs
α−1(t)ṡ(t) + (1− α)M0s

α−2(t)ṡ(t)x,
∂

∂x
Dαv(x, t) = −M0s

α−1(t)
Γ(1− α) x

−α.

Together we have
vt(x, t)−

∂

∂x
Dαv(x, t)

= M0αs
α−1(t)ṡ(t) + (1− α)M0s

α−2(t)ṡ(t)x+ M0s
α−1(t)

Γ(1− α) x
−α =: −f(x, t) ≥ 0.
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We define the function w = u− v. Then w satisfies
wt − ∂

∂x
Dαw = f in Qs,T ,

wx(0, t) > 0, w(s(t), t) = 0 for t ∈ (0, T ),
w(x, 0) ≤ 0 for 0 < x < s(0).

Since the function s is Lipschitz continuous, we get that wt ∈ L∞(Qs,T ). Thus, we may
apply the weak maximum principle from Proposition 4.13, to function w in order to
obtain that maxQs,T w = max∂Γs,T w. Since wx(0, t) > 0 maximum cannot be attained
on the left boundary. We note that w(x, 0) ≤ 0 and w(s(t), t) = 0, thus w ≤ 0 and we
obtain (4.74). Moreover, w needs to admit its maximum on the part of the boundary
(s(t), t), where it is equal to zero. Hence, by Lemma 4.10, we get (Dαw)(s(t), t) ≥ 0, thus
(Dαu)(s(t), t) ≥ (Dαv)(s(t), t) = −M .

4.2.3. A proof of the final result

Finally, we are ready to prove the Theorem 4.1. At first, we will show the existence of
a solution. The method of the proof relays on the construction of the free boundary s(·)
by the Schauder fixed point theorem. Subsequently we show that the obtained solution is
unique. It will be done by proving the monotone dependence of solutions upon data.

Theorem 4.17. Let b, T > 0 and α ∈ (0, 1). Let us assume that u0 ∈ H1+α(0, b),
u′0 ∈ 0H

α(0, b), u0(b) = 0 and u0 ≥ 0, u0 6≡ 0. Further let us assume that there exists
M > 0 such that for every x ∈ [0, b]

u0(x) ≤ MΓ(2− α)
b1−α (b− x).

Then, there exists (u, s) a solution to (4.1), such that s ∈ C1([0, T ]), for every t ∈ [0, T ]
there holds 0 < ṡ(t) ≤ M , u ∈ C(Qs,T ), Dαu ∈ C(Qs,T ), ut, ∂

∂x
Dαu ∈ C(Qs,T ) and

for every t ∈ [0, T ] ux(·, t) ∈ 0H
α(0, s(t)). Moreover, in the case α ∈ (1

2 , 1) we have
ux ∈ C(Qs,T ), while in the case α ∈ (0, 1

2 ] we have ux ∈ C(Qs,T \ ({t = 0} × [0, b])).
Furthermore, the boundary conditions (4.1)2 are satisfied for every t ∈ [0, T ]. Finally,
there exists β ∈ (α, 1), such that for every t ∈ (0, T ] and every 0 < ε < ω < s(t) there
holds u(·, t) ∈ W 2, 1

1−β (ε, ω).

Proof. We follow the idea introduced in the proof of [1, Theorem 5.1]. We define the set

Σ := {s ∈ C0,1[0, T ], 0 < ṡ ≤M, s(0) = b}.
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Then for every s ∈ Σ there exists a unique solution to (4.2), given by Theorem 4.9. We will
show that Σ is a compact and convex subset of a Banach space C([0, T ]) with a maximum
norm. The convexity of Σ is straightforward. In order to show that Σ is compact we will
firstly show that it is closed in C([0, T ]). Let us denote by {sk} the sequence in Σ which
is convergent in C([0, T ]) to some s. Then s ∈ C([0, T ]) and s(0) = b. Moreover, for every
k ∈ N and every τ, t ∈ [0, T ] we have

|sk(t)− sk(τ)| ≤M |t− τ | .

Passing to the limit with k we arrive at

|s(t)− s(τ)| ≤M |t− τ |

and hence s ∈ Σ. We note that any sequence in Σ which is bounded in C([0, T ]) is
equicontinuous, thus we may apply Arzela-Ascoli theorem to obtain that Σ is relatively
compact in C([0, T ]). We have already proven that Σ is closed, hence we obtain that Σ is
compact in C([0, T ]). For s ∈ Σ we define the operator

(Ps)(t) = b−
∫ t

0
(Dαu)(s(τ), τ)dτ,

where u is a solution to (4.2), corresponding to s, given by Theorem 4.9. We would like to
apply the Schauder fixed point theorem ([8, Theorem 3, Chapter 9.2.2.]), thus we have
to show that P : Σ → Σ and that it is continuous in maximum norm. Clearly we have
(Ps)(0) = b and from Lemma 4.14 and estimate (4.73) we infer

0 < d

dt
(Ps)(t) = −(Dαu)(s(t), t) ≤M.

Hence, P : Σ→ Σ.
To prove that P is continuous in maximum norm, we firstly note that integrating the first
equation in (4.2) we obtain

(Dαu)(s(τ), τ) =
∫ s(τ)

0
ut(x, τ)dx,

where we made use of the fact that for every fixed t > 0 ux(x, t) is bounded and hence
(Dαu)(0, t) = 0. Thus, we may rewrite the formula for P as follows

(Ps)(t) = b−
∫ t

0

∫ s(τ)

0
ut(x, τ)dxdτ = b−

∫ b

0

∫ t

0
ut(x, τ)dτdx−

∫ s(t)

b

∫ t

s−1(x)
ut(x, τ)dτdx

= b−
∫ b

0
u(x, t)dx+

∫ b

0
u(x, 0)dx−

∫ s(t)

b
u(x, t)dx = b+

∫ b

0
u0(x)dx−

∫ s(t)

0
u(x, t)dx. (4.75)
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Now, we take arbitrary s1, s2 ∈ Σ. Let us define smin(t) = min{s1(t), s2(t)}, smax(t) =
max{s1(t), s2(t)}. We also define function i = i(t) = 1 if smax(t) = s1(t) and i = 2
otherwise. Let u1 and u2 be two solutions to (4.2), given by Theorem 4.9, corresponding to
s1 and s2 respectively. Let us define v(x, t) = u1(x, t)− u2(x, t) and vε(x, t) = v(x, t) + εx.
Then vε satisfies

vεt − ∂
∂x
Dαvε = − εx−α

Γ(1−α) in {(x, t) : 0 < x < smin(t), 0 < t < T} =: Qsmin,T ,

vεx(0, t) = ε, for t ∈ (0, T ),
vε(x, 0) = εx in 0 < x < b.

From Lemma 4.12 we obtain that vε attains its maximum on the parabolic boundary. We
may estimate

|vε(smin(t), t)| ≤ |u1(smin(t), t)|+ |u2(smin(t), t)|+ εsmin(T ) = |ui(smin(t), t)|+ εsmin(T )

and since vε(x, 0) = εx ≤ εsmin(T ) and vεx(0, t) > 0 we obtain that

max
Qsmin,T

vε ≤ |ui(smin(t), t)|+ εsmin(T ).

Let us denote M0 := MΓ(2− α). Then, applying the estimate (4.74) from Lemma 4.16
we get

|ui(smin(t), t)| ≤M0s
α−1
max(t)(smax(t)− smin(t)) ≤M0b

α−1 max
τ∈[0,t]

|s1(τ)− s2(τ)| .

Hence,

max
Qsmin,T

v = max
Qsmin,T

(vε − εx) ≤M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)|+ εsmin(T ).

Passing with ε to zero we obtain

max
Qsmin,T

v ≤M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)| .

To estimate v from below we proceed similarly. We introduce vε(x, t) = v(x, t)− εx. Then
vε satisfies


vεt − ∂

∂x
Dαvε = εx−α

Γ(1−α) in Qsmin,T

vεx(0, t) = −ε, for t ∈ (0, T )
vε(x, 0) = −εx in 0 < x < b.

Lemma 4.12 implies that vε attains its minimum on the parabolic boundary. We may
estimate

vε(smin(t), t) ≥ − |ui(smin(t), t)| − εsmin(T )

and since vε(x, 0) = −εx ≥ −εsmin(T ) and vεx(0, t) < 0 we obtain that

min
Qsmin,T

vε ≥ − |ui(smin(t), t)| − εsmin(T ) ≥ −M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)| − εsmin(T ),

thus
min

Qsmin,T
v = min

Qsmin,T
(vε + εx) ≥ −M0b

α−1 max
τ∈[0,t]

|s1(τ)− s2(τ)| − εsmin(T ).
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Passing to the limit with ε we arrive at

min
Qsmin,T

v ≥ −M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)| .

Combining the estimates for minimal and maximal value of v we obtain

max
Qsmin,T

|v| ≤M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)| .

Furthermore, estimate (4.74) implies that∫ smax(t)

smin(t)
ui(x, t)dx ≤M0s

α−1
max(t)

∫ smax(t)

smin(t)
(smax(t)− x)dx ≤M0b

α−1(smax(t)− smin(t))2.

Finally, we may estimate

|(Ps2)(t)− (Ps1)(t)| =
∣∣∣∣∣
∫ s2(t)

0
u2(x, t)dx−

∫ s1(t)

0
u1(x, t)dx

∣∣∣∣∣
≤
∫ smin(t)

0
|v(x, t)| dx+

∫ smax(t)

smin(t)
ui(x, t)dx

≤ smin(t) max
Qsmin,T

|v|+ (smax(t)− smin(t))2M0b
α−1

≤ (b+MT )M0b
α−1 max

τ∈[0,t]
|s1(τ)− s2(τ)|+M0b

α−1 max
τ∈[0,t]

|s1(τ)− s2(τ)|2 .

Thus P is continuous and by the Schauder fixed point theorem there exist a fixed point
of P . In this way we have proven that there exists a pair (u, s) that satisfies the system
(4.1), where s ∈ Σ and u is given by Theorem 4.9. We note that ṡ(t) = −Dαu(s(t), t) and
since Dαu ∈ C(Qs,T ) we obtain that ṡ ∈ C[0, T ]. This finishes the proof.

In order to show that the obtained solution is unique we will prove the monotone
dependence upon data.

Theorem 4.18. Let (ui, si) be a solution to (4.1) given by Theorem 4.17 corresponding
to bi and ui0 for i = 1, 2. If b1 ≤ b2 and u1

0 ≤ u2
0, then for every t ∈ [0, T ] we have

s1(t) ≤ s2(t).

Proof. In the proof we apply the ideas introduced in [1]. We divide the proof into two
steps.
1. Let us firstly discuss the case b1 < b2, u1

0 ≤ u2
0 and u1

0 6≡ u2
0 on [0, b1]. We will proceed

by contradiction. Let us assume that there exists t ∈ [0, T ] such that s1(t) > s2(t). We
denote t0 = inf{t ∈ [0, T ] : s1(t) = s2(t)}. Then by virtue of weak minimum principle
(Lemma 4.12) function v = u2 − u1 is nonnegative on Qs1,t0 and v(s1(t0), t0) = 0. Thus,
from Lemma 4.15 we infer that either v ≡ 0 on Qs1,t0 or (Dαv)(s(t0), t0) < 0. The first
possibility is a contradiction with u1

0 6≡ u2
0. Hence,

0 > (Dαv)(s(t0), t0) = (Dαu2)(s(t0), t0)− (Dαu1)(s(t0), t0) = ṡ1(t0)− ṡ2(t0)
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and we obtain the contradiction with the definition of t0. Thus, we obtain that if b1 < b2,
u1

0 ≤ u2
0 and u1

0 6≡ u2
0 on [0, b1], then s1(t) ≤ s2(t) for every t ∈ [0, T ].

2. In the general case, that is b1 ≤ b2 and u1
0 ≤ u2

0 we proceed as follows. We fix
δ > 0 and denote by uδ0 a smooth function defined on [0, b2 + δ] in such a way that
uδ0 ≡ 0 on [b2 + δ/2, b2 + δ], uδ0 ≥ u2

0 on [0, b2] and maxx∈[0,b2](uδ0(x) − u2
0(x)) = δ,

maxx∈[b2,b2+δ/2] u
δ
0(x) ≤ δ. Then, we denote by (uδ, sδ) the solution to (4.1) given by

Theorem 4.1 corresponding to uδ0. By the first step of the proof, we have s1 ≤ sδ and
s2 ≤ sδ. On the other hand performing calculations as in (4.75) we have

sδ(t) = b2 + δ +
∫ t

0
ṡδ(τ)dτ = b2 + δ −

∫ t

0
(Dαuδ)(sδ(τ), τ)dτ

= b2 + δ +
∫ b2+δ

0
uδ0(x)dx−

∫ sδ(t)

0
uδ(x, t)dx

and
s2(t) = b2 +

∫ b2

0
u2

0(x)dx−
∫ s2(t)

0
u2(x, t)dx.

Subtracting these identities we obtain

sδ(t)− s2(t) = δ +
∫ b2+δ

0
uδ0(x)dx−

∫ b2

0
u2

0(x)dx−
∫ sδ(t)

0
uδ(x, t)dx+

∫ s2(t)

0
u2(x, t)dx

= δ+
∫ b2

0
uδ0(x)−u2

0(x)dx+
∫ b2+ δ

2

b2
uδ0(x)dx−

∫ sδ(t)

s2(t)
uδ(x, t)dx−

∫ s2(t)

0
[uδ(x, t)−u2(x, t)]dx.

The last two integrals are positive due to Lemma 4.12. Making use of
∥∥∥uδ0 − u2

0

∥∥∥
L∞(0,b2)

= δ

we obtain
s1(t) ≤ sδ(t) ≤ s2(t) + δ + b2δ + δ

2δ for every t ∈ [0, T ].

Passing to the limit with δ we obtain that s1(t) ≤ s2(t) for every t ∈ [0, T ].

Corollary 4.19. From Theorem 4.18 applied together with Theorem 4.9 it follows that
the solution (u, s) to problem (4.1) given by Theorem 4.17 is unique. This finishes the
proof of Theorem 4.1.

4.3. A self-similar solution

In this section we will find a special solution to space-fractional Stefan problem. It
is worth to mention that the self-similar solution to space-fractional Stefan problem was
obtained independently in the recent paper [26]. Let us discuss the following system

ut − ∂
∂x
Dαu = 0 in {(x, t) : 0 < x < s(t), 0 < t <∞},

u(0, t) = c1, u(t, s(t)) = 0 for t ∈ (0,∞),
ṡ(t) = −(Dαu)(s(t), t) for t ∈ (0,∞),

(4.76)

where we assume that s(0) = 0 and c1 > 0. We would like to find a scale-invariant solution
to this problem. In order to find the appropriate scaling we introduce

uλ(x, t) := λcu(λax, λbt) for a, b, c, λ > 0.

107



CHAPTER 4. A SPACE-FRACTIONAL STEFAN PROBLEM

Let us perform the calculations

ut(λax, λbt) = λ−b−cuλt (x, t) and ux(λax, λbt) = λ−a−cuλx(x, t).

Further we have,

Γ(1− α) ∂
∂x
Dαuλ(x, t) = ∂

∂x

∫ x

0
(x− p)−αuλx(p, t)dp = ∂

∂x

∫ x

0
(x− p)−αλa+cux(λap, λbt)dp.

Applying the substitution λap = w we obtain

Γ(1− α)∂αuλx(x, t) = λc
∂

∂x

∫ λax

0
(x− wλ−a)−αux(w, λbt)dw

= λaα+c ∂

∂x

∫ λax

0
(λax− w)−αux(w, λbt)dw = λa(α+1)+c( ∂

∂x
Dαu)(λax, λbt).

Hence, if u satisfies (4.76)1, then

0 = λ−cλ−buλt (x, t)− λ−cλ−a(α+1) ∂

∂x
Dαuλ(x, t).

We are looking for a self-similar solution, so if we suppose that u ≡ uλ we arrive at

b = a(α + 1) and c = 0.

Motivated by the above calculation, we introduce the similarity variable ξ = xt−
1

α+1 and
we define

F (ξ) = F (xt−
1

α+1 ) := u(x, t).

Let us rewrite the equation (4.76)1 in terms of function F . We may calculate as follows

ut(x, t) = − 1
α + 1xt

− 1
α+1−1F ′(ξ), ux(x, t) = t−

1
α+1F ′(ξ) (4.77)

and
Γ(1− α) ∂

∂x
Dαu(x, t) = t−

1
α+1

∂

∂x

∫ x

0
(x− p)−αF ′(pt−

1
α+1 )dp

= ∂

∂x

∫ xt
− 1

1+α

0
(x− wt

1
α+1 )−αF ′(w)dw = t−

α
α+1

∂

∂x

∫ xt
− 1
α+1

0
(xt−

1
α+1 − w)−αF ′(w)dw

= Γ(1− α)t−1 ∂

∂ξ
DαF (ξ). (4.78)

Hence, if u satisfies (4.76)1, recalling the identity (3.1) we obtain that

− 1
1 + α

ξF ′(ξ)− ∂αF ′(ξ) = 0.

We will proceed as follows. At first we will solve the auxiliary problem for function F
with boundary conditions F (0) = c1, I1−αF ′(0) = c2 on the interval [0, R], where R > 0,
c2 < 0 are arbitrary constants and c1 comes from (4.76)2. Then, we will propose the
formula for the family {s}R and we will choose the constant c2 = c2(R) such that the
pair uR(x, t) = FR(xt−

1
1+α ) and sR is a solution to (4.76)1, (4.76)3 . Then we will choose

R = c0 > 0 such that F (c0) = 0, which will guarantee that the pair (uc0 , sc0) satisfies the
whole system (4.76).
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Lemma 4.20. Let us consider the problem ∂αF ′(ξ) = − ξ
α+1F

′(ξ) for 0 < ξ < R,

F (0) = c1, I1−αF ′(0) = c2,
(4.79)

where c1 > 0, R > 0, c2 < 0 are fixed constants and I1−αF ′(0) := limξ→0 I
1−αF ′(ξ). Then,

there exists exactly one solution to (4.79) which belongs to

XR,c1,c2 := {v ∈ C1((0, R]) : ξ1−αv′ ∈ C([0, R]), v(0) = c1, I
1−αv′(0) = c2}.

Furthermore, the solution is given by the formula

F (ξ) = c1 + c2

Γ(α + 1)

ξα + Γ(α + 1)ξα
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

 , (4.80)

where the series is uniformly convergent on [0, R]. Finally, if we define

u(x, t) := F (xt−
1

1+α ), (4.81)

then u(0, t) = c1 and u satisfies (4.76)1 on {(x, t) : 0 < x < Rt
1

α+1 , 0 < t <∞}.

Proof. At first we will rewrite (4.79) in the integral form. Let us assume that F belonging
to XR,c1,c2 satisfies (4.79). We apply Iα to both sides of (4.79)1. Since F ′ ∈ L1(0, R) from
identity (4.79) we obtain that also ∂αF ′ ∈ L1(0, R). Hence, we may apply Proposition 2.29
to obtain

F ′(ξ) = c2
ξα−1

Γ(α) −
1

α + 1I
α(ξF ′)(ξ). (4.82)

Integrating this identity and applying Proposition 2.22 we arrive at

F (ξ) = c1 + ξα

Γ(α + 1)c2 −
1

α + 1I
αI(ξF ′)(ξ).

We note that ∫ ξ

0
pF ′(p)dp = ξF (ξ)−

∫ ξ

0
F (p)dp, i.e. I(ξF ′) = ξF − IF.

Denoting by E the identity operator, we get

F (ξ) = c1 + ξα

Γ(α + 1)c2 + 1
α + 1I

α(I − ξE)F (ξ).

The above identity may be written in the following form

F (ξ) = G(ξ) +KF (ξ), (4.83)

where
G(ξ) = c1 + ξα

Γ(α + 1)c2, KF (ξ) = 1
α + 1I

α(I − ξE)F (ξ).

Let us find a solution to (4.83). Applying the operator K to both sides of (4.83) we obtain

KF (ξ) = KG(ξ) +K2F (ξ).

Iterating this procedure, we arrive at

F (ξ) =
n∑
k=0

KkG(ξ) +Kn+1F (ξ) for any n ∈ N. (4.84)
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We note that if F belongs to C([0, R]), then KnF → 0 uniformly on [0, R]. Indeed, making
use of Example 2.1, we may calculate that

Iα(I + ξE)ξβ = Γ(β + 3)
Γ(β + α + 2)(β + 1)ξ

β+α+1.

Hence, we have

|KnF (ξ)| ≤ ‖F‖C([0,R])
1

(α + 1)n (Iα(I + ξE))n1 = ‖F‖C([0,R])
ξn(α+1)∏n−1

k=0(k(α + 1) + 3)
(1 + α)nΓ(n(α + 1) + 1)

= ‖F‖C([0,R])
ξn(α+1)∏n−1

k=0(k + 3
α+1)

Γ(n(α + 1) + 1) ≤ 2 ‖F‖C([0,R]) R
n(α+1) Γ(n+ 1)

Γ(n+ 1 + αn)
n→∞−→ 0.

Thus, we may pass to the limit in (4.84) to obtain that

F (ξ) =
∞∑
k=0

KkG(ξ). (4.85)

We will calculate the sum of the series and we will show that it is uniformly convergent on
[0, R]. At first, we note that for any n ∈ N \ {0} we have (I − ξE)n1 = 0, thus

F (ξ) = c1 + c2

Γ(α + 1)

∞∑
k=0

1
(1 + α)k [Iα(I − ξE)]kξα.

Furthermore, from Example 2.1 we may infer that

Iα(I − ξE)ξβ = − βΓ(β + 1)
Γ(β + α + 2)ξ

β+α+1. (4.86)

We will show by induction that for every k ∈ N, k ≥ 1 we have
1

Γ(1 + α) [Iα(I − ξE)]kξα = (−ξ1+α)kξα
∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1)) . (4.87)

For k = 1, applying (4.86) with β = α we arrive at
1

Γ(1 + α)I
α(I − ξE)ξα = −ξ2α+1 α

Γ(2α + 2) ,

which is equal to (4.87) for k = 1. Let us assume that for a fixed k ≥ 1 identity (4.87) is
satisfied. Then

1
Γ(1 + α) [Iα(I − ξE)]k+1ξα =

∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))I
α(I − ξE)[(−ξ1+α)kξα].

Making use of (4.86) with β = (1 + α)k + α we get that
1

Γ(1 + α) [Iα(I − ξE)]k+1ξα =
k∏
i=1

(iα + i− 1) · (−1)k+1[(1 + α)k + α]
Γ((1 + α)k + 2α + 2) ξ

(1+α)k+2α+1

= (−ξ1+α)k+1ξα
∏k+1
i=1 (iα + i− 1)

Γ((α + 1)(k + 2)) .

Hence, by the principle of mathematical induction we obtain (4.87). From identity (4.87)
follows that function F defined by (4.85) is given by the formula

F (ξ) = c1 + c2

Γ(α + 1)

ξα + Γ(α + 1)ξα
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

 .
We will show that the series above is uniformly absolutely convergent. Indeed, let us
denote

ak = R(1+α)k+α

(1 + α)k
∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1)) .
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Then, we may calculate
ak+1

ak
= Rα+1k(α + 1) + α

1 + α

Γ((α + 1)k + α + 1)
Γ((α + 1)k + 2(α + 1))

≤ Rα+1

α + 1
Γ((α + 1)k + α + 2)

Γ((α + 1)k + α + 2 + α) = Rα+1

α + 1
B(α, (α + 1)k + α + 2)

Γ(α) −→ 0 as k →∞.

Thus, by the d’Alembert criterion the series in (4.80) is uniformly absolutely convergent.
Now we will check that F defined by (4.80) actually satisfies (4.83). Let us calculate KF .
We note that

1
α + 1I

α(I − ξE)c1 = 0,

hence

KF (ξ) = 1
α + 1I

α(I−ξE)
 c2

Γ(α + 1)

ξα + Γ(α + 1)ξα
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

 .
Integrating the series term by term and making use of identity (4.86) we have

1
α + 1I

α(I − ξE)F (ξ) = − α

α + 1c2
ξ2α+1

Γ(2(α + 1))

− 1
(α + 1)c2

∞∑
k=1

( −1
1 + α

)k ξ(1+α)k+2α+1

Γ((1 + α)(k + 2))[(1 + α)k + α]
k∏
i=1

(iα + i− 1)

= − α

α + 1c2
ξ2α+1

Γ(2(α + 1)) + c2ξ
α
∞∑
k=2

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((1 + α)(k + 1))

= c2ξ
α
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((1 + α)(k + 1)) .

Hence, we verified that function F given by (4.80) satisfies (4.83). Furthermore, the
solution to (4.83) belongs to XR,c1,c2 . Indeed, F given by (4.80) is continuous as a uniform
limit of continuous functions. By identity (4.83), we obtain that F (0) = c1 and

(I1−αF ′)(0) = c2 + 1
1 + α

(DαIα(I − ξE)F )(0) = c2 + 1
1 + α

((I − ξE)F )(0) = c2.

In order to show ξ1−αF ′ ∈ C([0, R]) we differentiate the series in (4.80) term by term.
d

dξ

ξα ∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

 = ξα−1
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1) + 1) .

(4.88)
We will show that this series is absolutely convergent uniformly for ξ ∈ [0, R]. Let us
denote

bk =
(
R1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1) + 1) .

Then, we may calculate
bk+1

bk
= R1+α

1 + α
· [(k + 1)(α + 1)− 1]Γ((α + 1)(k + 1) + 1)

Γ((α + 1)(k + 2) + 1)

≤ R1+α

1 + α
· Γ((α + 1)(k + 1) + 2)

Γ((α + 1)(k + 2) + 1) = R1+αB(α, (α + 1)(k + 1) + 2)
(1 + α)Γ(α) −→ 0, as k →∞.
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Hence, the series in (4.88) is uniformly absolutely convergent, which leads to ξ1−αF ′ ∈
C([0, R]). Now we will show that F satisfies (4.79). Since F ′ ∈ L1(0, R) we may apply Dα

to (4.83) to obtain

DαF (ξ) = c2 + 1
1 + α

IF (ξ)− ξ

1 + α
F (ξ),

where we made use of Proposition 2.28 and Example 2.1. The right-hand-side is absolutely
continuous, hence differentiating the identity above we arrive at

∂

∂x
DαF (ξ) = − ξ

1 + α
F ′(ξ).

The identities (4.77) and (4.78) finish the proof.

Lemma 4.21. Let F be a solution to the problem (4.79) given by Lemma 4.20. Then,
for every R > 0 there holds F ′ < 0 on (0, R). Furthermore, function u defined by (4.81)
satisfies ut > 0, ux < 0 on {(x, t) : 0 < x < Rt

1
α+1 , 0 < t <∞}.

Proof. We note that, since c2 < 0, by (4.80) we have

F ′(ξ)→ −∞ as ξ → 0.

Indeed, the derivative of the series in (4.80) vanishes as ξ → 0 and c2ξ
α−1 → −∞ as

ξ → 0. Hence, F is decreasing in the neighborhood of zero. We note that F satisfies the
assumptions of Lemma 4.11 because by Lemma 4.20 function F is absolutely continuous
and F is smooth away from the origin. Let us assume that F admits a local minimum at
point ξ0 > 0. Then, F ′(ξ0) = 0 and, since F is not constant, by Lemma 4.11 we obtain
that ( ∂

∂x
DαF )(ξ0) < 0. It leads to a contradiction with (4.79). Thus, F ′ < 0. The final

part of the statement follows from the identities (4.77).

In the next lemma we obtain the family (uR, sR)R>0 of solutions to (4.76)1 and (4.76)3.

Lemma 4.22. For every c1 > 0 and every R > 0 the functions

sR(t) = Rt
1

1+α , (4.89)

uR(x, t) = c1+ c̃2

Γ(α + 1)

xαt− α
α+1 + Γ(α + 1)xαt−

α
α+1

∞∑
k=1

(
−x1+α

(1 + α)t

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

,
(4.90)

where

c̃2 = − R

(1 + α)
[
1 +∑∞

k=1

(
−R1+α

1+α

)k ∏k

i=1(iα+i−1)
Γ((α+1)k+1)

] (4.91)

satisfy the equation (4.76)3. Moreover, uR is a solution to (4.76)1 with s(t) = sR(t) and
uR(0, t) = c1.
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Proof. We note that uR(x, t) = F (xt−
1

1+α ) where F is the solution to (4.79) with c2 equal
to c̃2 whenever c̃2 given by (4.91) is well defined and negative. It is enough to show that
the denominator in the definition of c̃2 is positive. To this end, let us recall the formula for
the function F given by (4.80). Since, by Lemma 4.21, for any c2 < 0 there holds F ′ < 0,
we have also DαF < 0. Making use of Example (2.1) we obtain that for any c2 < 0

DαF (R) = c2

1 +
∞∑
k=1

(
−R1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)k + 1)

 .
This implies that

1 +
∞∑
k=1

(
−R1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)k + 1) > 0.

Hence, for every R > 0 the constant c̃2 given by (4.91) is well defined and negative. By
Lemma 4.20 uR fulfills (4.76)1 with s(t) = sR(t) and uR(0, t) = c1. Moreover,

t−
α
α+1 I1−αF ′(ξ) = (I1−αuRx )(x, t),

hence, I1−αF ′(0) = c̃2 implies (I1−αuRx )(0, t) = c̃2t
− α
α+1 . Now we will show that (uR, sR)R>0

given by (4.89) - (4.91) satisfy (4.76)3. Let us calculate DαuR(x, t) for uR given by (4.90).
Applying Example 2.1 we get

DαuR(x, t) = c̃2t
− α
α+1 + t−

α
α+1 c̃2

∞∑
k=1

(
−x1+α

(1 + α)t

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)k + 1) .

Hence, for sR given by (4.89) we have

t
α
α+1DαuR(sR(t), t) = c̃2 + c̃2

∞∑
k=1

(
−R1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)k + 1) .

Making use of the formula (4.91) we obtain that

−DαuR(sR(t), t) = t−
α
α+1

R

1 + α
= ṡR(t)

and hence, the functions sR and uR defined by (4.89) and (4.90) satisfy (4.76)3 which
finishes the proof.

It remains to choose R > 0 such that the pair (uR, sR) given by Lemma (4.22) satisfies
uR(sR(t), t) = 0.

Theorem 4.23. For every c1 > 0 there exists c0 > 0 such that the pair (u, s) := (uc0 , sc0),
where (uc0 , sc0) come from Lemma 4.22 with R = c0, satisfies the system (4.76). Further-
more,

∀x > 0 u(x, ·), ut(x, ·), ux(x, ·) ∈ C([s−1(x),∞)) (4.92)

∀t > 0 u(·, t), ut(·, t) ∈ C([0, s(t)]), ux(·, t) ∈ C((0, s(t)]) (4.93)

and
∀t > 0 ∂

∂x
Dαu(·, t) ∈ C([0, s(t)]). (4.94)

Finally, u > 0, ut > 0, ux < 0 on {(x, t) : 0 < x < s(t), 0 < t <∞}.

113



Proof. Let us show that there exists c0 > 0 such that the pair (uR, sR) given by Lemma 4.22
with R = c0 satisfies uR(sR(t), t) = 0. For ξ = xt−

1
1+α function uR defined in (4.90) is

given by
uR(x, t) = F (ξ) = c1 + c̃2g(ξ),

where

g(ξ) =
 ξα

Γ(α + 1) + ξα
∞∑
k=1

(
−ξ1+α

1 + α

)k ∏k
i=1(iα + i− 1)

Γ((α + 1)(k + 1))

 .
We note that g(0) = 0 and since c̃2 < 0, from Lemma 4.21 we infer that g is increasing.
Applying Lemma 4.11 we obtain that ∂

∂x
Dαg ≤ 0. Recalling that c̃2 is given by (4.91) we

arrive at
F (ξ) = c1 −

Rg(ξ)
(α + 1)Dαg(R) .

We would like to find R > 0 such that F (R) = 0. We note that

F (R) = c1 −
Rg(R)

(α + 1)Dαg(R) .

Since the denominator is positive it is enough to show that there exists a positive zero of
the function

h(R) := c1(α + 1)Dαg(R)−Rg(R).

We note that since Dαg(0) = 1 we have h(0) = c1(α + 1) > 0. On the other hand, since
g is absolutely continuous and g(0) = 0, we may write g(R) = IαDαg(R). Applying
∂
∂x
Dαg ≤ 0 we may estimate as follows

IαDαg(R) = 1
Γ(α)

∫ R

0
(R− p)α−1Dαg(p)dp ≥ Dαg(R)

Γ(α)

∫ R

0
(R− p)α−1dp = Dαg(R)Rα

Γ(α + 1) .

Hence,

h(R) = c1(1 + α)Dαg(R)−RIαDαg(R) ≤ c1(1 + α)Dαg(R)−RDαg(R) Rα

Γ(α + 1) .

Recalling that Dαg > 0 we arrive at h(R) → −∞ as R → ∞. Hence, since h is
continuous we may apply the Darboux property to deduce that there exist c0 > 0 such
that h(c0) = 0, which implies F (c0) = 0. Moreover, for s(t) = c0t

1
1+α there holds

u(s(t), t) = u(c0t
1

1+α , t) = F (c0) = 0. The regularity results (4.92) and (4.93) immediately
follows from identities (4.77) and regularity of F established in Lemma 4.20. To show (4.94)
we note that since F satisfies (4.79), the continuity of ξF (ξ) implies ∂

∂x
DαF ∈ C([0, R]).

This together with identity (4.78) leads to (4.94).

Corollary 4.24. The solution (u, s) obtained in Theorem 4.23 satisfies the regularity
assumptions (2.26), (2.27) which were necessary to derive the model.



Chapter 5

A special solution to time-fractional Stefan
problem

In this chapter we will find a special solution to the model derived in Theorem 2.37.
We note that the results presented in this chapter come from [14]. We will look for a
self-similar solution to the time-fractional Stefan problem in the domain

U = {(x, t) ∈ R× (0,∞) : 0 < x < s(t)}, (5.1)

where (s(t), t) is a free boundary. We impose a constant positive Dirichlet boundary
condition on the left boundary and we assume that s(0) = 0. In this case, the problem
formulated in Theorem 2.37 takes the following form

Dα
s−1(x)u(x, t) = uxx(x, t)−

1
Γ(1− α)(t− s−1(x))−α in U, (5.2)

u(s(t), t) = 0 for every t > 0, (5.3)

u(0, t) = γ for every t > 0, (5.4)

ṡ(t) = − 1
Γ(α) lim

a↗s(t)

d

dt

[∫ t

s−1(a)
(t− τ)α−1ux(a, τ)dτ

]
for every t > 0, (5.5)

where γ > 0 is given. We are going to prove the following result.

Theorem 5.1. For any γ > 0 there exists a pair (u, s) which satisfies (5.2)-(5.5). Fur-
thermore, the solution is given by

s(t) = c1t
α
2 , (5.6)

u(x, t) =
∫ c1

xt−
α
2
H(p, xt−α2 )Gc1(p)dp in U, (5.7)

where c1 = c1(α, γ) > 0 and

Gc1(y) = 1
Γ(1− α)

∫ c1

y
(1− c−

2
α

1 µ
2
α )−αdµ for 0 ≤ y ≤ c1, (5.8)

H(p, x) = 1 +
∫ p

x
N(p, y)dy for 0 ≤ x ≤ p, (5.9)
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N(p, y) =
∞∑
n=1

Mn(p, y) for 0 ≤ y ≤ p, (5.10)

where
M1(p, y) = 1

Γ(1− α)

∫ p

y
(1− p− 2

αµ
2
α )−αdµ for 0 ≤ y ≤ p (5.11)

and
Mn(p, y) =

∫ p

y
M1(a, y)Mn−1(p, a)da for 0 ≤ y ≤ p and n ≥ 2. (5.12)

For every R > 0 the series (5.10) converges uniformly on WR = {(p, y) : 0 ≤ y ≤ p ≤ R}.
Functions Mn, N are positive on {(p, y) : 0 ≤ y < p}, hence u is positive in U .
For every a, λ > 0 function u satisfies the scaling property

u(x, t) = u(λax, λ 2a
α t) (5.13)

and
ux(s(t), t) = 0. (5.14)

Furthermore, for every t > 0 there holds u(·, t) ∈ W 2,1(0, s(t)) and ut(x, ·) ∈ C([s−1(x),∞))
for every x > 0. Finally, we have ux(x, ·) ∈ L∞(s−1(x),∞)∩ACloc([s−1(x),∞)) for every
x > 0 and ut(·, t) ∈ L1(0, s(t)), Dα

s−1(·)u(·, t) ∈ L1(0, s(t)) for every t > 0. In particular,
the pair (u, s) satisfies the assumptions (A1) - (A3).

Corollary 5.2. If c1 is a positive constant and

γ =
∫ c1

0
H(p, 0)Gc1(p)dp,

then (5.6)-(5.7) define a solution to (5.2)-(5.5).

Remark 5.1. If we replace the Dirichlet condition (5.4) by the Neumann condition

ux(0, t) = −βt−α2 , β > 0,

then Theorem 5.1 holds with c1 = c1(α, β) > 0.

The proof will be divided into a few steps and after a proof of Theorem 5.1 we will
justify the Remark 5.1. At first we will proceed with formal calculations that will lead
us to an appropriate scaling. We introduce parameters a, b, c, λ > 0 and we define the
function

uλ(x, t) = λcu(λax, λbt). (5.15)

Our aim is to find a, b, c and the curve (s(t), t) such that, if (u, s) is a solution to (5.2),
then uλ ≡ u.
At first, we perform calculations. We note that uxx(x, t) = λ−cλ−2auλxx(λ−ax, λ−bt) and

Γ(1−α)Dα
s−1(x)u(x, t) =

∫ t

s−1(x)
(t−τ)−αut(x, τ)dτ = λ−cλ−b

∫ t

s−1(x)
(t−τ)−αuλt (λ−ax, λ−bτ)dτ

= λ−c
∫ tλ−b

λ−bs−1(x)
(t− λbp)−αuλt (λ−ax, p)dp = λ−cλ−bα

∫ tλ−b

λ−bs−1(x)
(tλ−b − p)−αuλt (λ−ax, p)dp
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= λ−cλ−bαΓ(1− α)Dα
λ−bs−1(x)u

λ(λ−ax, λ−bt),

i.e.
Dα
s−1(λax)u(λax, λbx) = λ−cλ−bαDα

λ−bs−1(λax)u
λ(x, t).

Hence, if the pair (u, s) is a solution to (5.2), then

0 = Dα
s−1(λax)u(λax, λbt)− uxx(λax, λbt) + 1

Γ(1− α)(λbt− s−1(λax))−α

= λ−cλ−bαDα
λ−bs−1(λax)u

λ(x, t)− λ−cλ−2auλxx(x, t) + 1
Γ(1− α)λ

−bα(t− λ−bs−1(λax))−α.

Thus, if we set c = 0 and
b = 2a

α
, (5.16)

then we get

0 = Dα
λ−bs−1(λax)u

λ(x, t)− uλxx(x, t) + 1
Γ(1− α)(t− λ−bs−1(λax))−α.

We observe that, if s(t) satisfies

s−1(x) = λ−bs−1(λax), (5.17)

then u and uλ are the solutions to the same equation. Let us find s which satisfies
(5.17) with parameters a, b related by (5.16). We have to solve the following equation
s−1(x) = λ−

2a
α s−1(λax). Function s−1 satisfies this identity if it fulfills the functional

equation g(λx) = λ
2
α g(x). To solve this equation, it is enough to write

g(x)− g(λx)
x(1− λ) = g(x)

x

1− λ 2
α

1− λ
and take the limit λ→ 1. Then we get that g′ = 2

α
g
x
, i.e. g(x) = cx

2
α . Thus, we obtained

that, if there exists a self-similar solution, then the interface may have a form

s(t) = c1t
α
2 (5.18)

for some positive c1. If we denote
c0 = c

− 2
α

1 , (5.19)

then we may write
s−1(x) = c0x

2
α . (5.20)

Our aim is to find a special solution u to the system (5.2), (5.3), (5.5), with function s
given by (5.18). We will proceed as follows. At first, we will rewrite the equations (5.2),
(5.5) in terms of a new self-similarity variable. Subsequently, we will show that if u is
appropriately regular, self-similar function, then condition (5.5) implies ux(s(t), t) = 0.
Then, we will solve the auxiliary problem

Dα
s−1(x)u(x, t) = uxx(x, t)−

1
Γ(1− α)(t− s−1(x))−α in U, (5.21)

u(s(t), t) = 0, ux(s(t), t) = 0 for t > 0,
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with s given by (5.18). The next step is to prove that the obtained solution satisfies (5.5).
In the final section, we will prove that the solution is positive and that for every γ > 0
we may find c1 > 0 such that obtained solution satisfies Dirichlet boundary condition
u(0, t) = γ.

5.1. Similarity variable

Let us begin with introducing a similarity variable

ξ = tx−
2
α . (5.22)

We define function f as follows

f(ξ) = f(tx− 2
α ) := u(x, t). (5.23)

In the next proposition we establish how the expected regularity properties of u
transforms to the properties of f . Furthermore, we rewrite the conditions (5.2), (5.3), (5.5)
in terms of f and prove that (5.5) implies vanishing of derivative of f at point c0.

Proposition 5.3. Let us assume that s is given by (5.18) with any fixed c1 > 0 and u
is a self-similar solution to (5.2), (5.3), (5.5), where the similarity variable is given by
(5.22). Suppose that u has following regularity. For k > 1 and every t > 0 there hold
ux(·, t) ∈ L1(0, s(t)), uxx(·, t) ∈ L1(s(t)/k, s(t)). Then, the function f defined by (5.23)
satisfies f ′ ∈ L1(c0,∞) ∩ AC([c0, k

2
α c0]), f ∈ C2(c0, k

2
α c0) and for ξ ∈ (c0, k

2
α c0) we have

1
Γ(1− α)

∫ ξ

c0
(ξ− p)−αf ′(p)dp =

( 2
α

)2
ξ2f ′′(ξ) +

[( 2
α

)2
+ 2
α

]
ξf ′(ξ)− (ξ − c0)−α

Γ(1− α) , (5.24)

f(c0) = 0, (5.25)

(
α

2

)2
c−2

0 Γ(α) = lim
b↘c0

d

db

[∫ b

c0
(b− p)α−1f ′(p)dp

]
. (5.26)

The identity (5.24) together with regularity of f implies

lim
ξ↘c0

(ξ − c0)αf ′′(ξ) =
(
α

2

)2 c−2
0

Γ(1− α) , (5.27)

while from (5.26) we deduce
f ′(c0) = 0. (5.28)

Proof. Let us begin with a simple calculation,

ut(x, τ) = f ′(τx− 2
α )x− 2

α , (5.29)

ux(x, t) = − 2
α
f ′(tx− 2

α )tx− 2
α
−1, (5.30)
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uxx(x, t) =
( 2
α

)2
f ′′(tx− 2

α )(tx− 2
α )2x−2 + 2

α
( 2
α

+ 1)f ′(tx− 2
α )(tx− 2

α )x−2. (5.31)

Applying the substitution p = τx−
2
α we get

Dα
s−1(x)u(x, t) = 1

Γ(1− α)

∫ t

c0x
2
α

(t− τ)−αf ′(τx− 2
α )x− 2

αdτ

= 1
Γ(1− α)

∫ tx−
2
α

c0
(t− x 2

αp)−αf ′(p)dp = x−2 1
Γ(1− α)

∫ tx−
2
α

c0
(tx− 2

α − p)−αf ′(p)dp.

Furthermore, we have
(t− c0x

2
α )−α = x−2(tx− 2

α − c0)−α.

After having inserted these results in equation (5.2) with s given by (5.18), we obtain
(5.24). To show that (5.25) holds, it is enough to notice that, since the function u vanishes
on the free boundary, we have

0 = u(s(t), t) = u(c1t
α
2 , t) = f(c0),

where we used (5.19). Now, we will prove the regularity results. By (5.30) we get

∞ >
∫ s(t)

0
|ux(x, t)|dx = 2

α

∫ s(t)

0
|f ′(tx− 2

α )|tx− 2
α
−1dx =

∫ ∞
c0
|f ′(ξ)|dξ. (5.32)

From (5.31) we obtain in the similar way that

∞ >
∫ s(t)

s(t)/k
|uxx(x, t)|dx =

∫ s(t)

s(t)/k

∣∣∣∣∣
( 2
α

)2
f ′′(tx− 2

α )(tx− 2
α )2x−2+ 2

α
( 2
α

+ 1)f ′(tx− 2
α )(tx− 2

α )x−2
∣∣∣∣∣dx

=
∫ k

2
α c0

c0

∣∣∣∣ 2αf ′′(ξ)ξ1+α
2 t−

α
2 + ( 2

α
+ 1)f ′(ξ)ξ α2 t−α2

∣∣∣∣ dξ
≥ 2
α
c

1+α
2

0 t−
α
2

∫ k
2
α c0

c0
|f ′′(ξ)| dξ − ( 2

α
+ 1)kc

α
2
0 t
−α2

∫ ∞
c0
|f ′(ξ)|dξ for every t > 0

and as a consequence we obtain ∫ k
2
α c0

c0
|f ′′(ξ)| dξ <∞. (5.33)

The estimates (5.32) and (5.33) lead to f ′ ∈ AC([c0, k
2
α c0]). Making use of the absolute

continuity of f ′ in identity (5.24) we deduce that f ∈ C2(c0, k
2
α c0). Hence, we obtained

postulated regularity results. Now, we shall rewrite the condition (5.5) in terms of the
function f . We will show that it leads to (5.26). Let us fix a ∈ (s(t)/k, s(t)). Applying
the substitution p = a−

2
α τ we get that

A ≡ d

dt

[∫ t

s−1(a)
(t− τ)α−1ux(a, τ)dτ

]
= − 2

α

d

dt

[∫ t

c0a
2
α

(t− τ)α−1f ′(τa− 2
α )τa− 2

α
−1dτ

]

= − 2
α
a

2
α
−1 d

dt

∫ ta−
2
α

c0
(t− a 2

αp)α−1pf ′(p)dp
 = − 2

α
a
d

dt

∫ ta−
2
α

c0
(ta− 2

α − p)α−1pf ′(p)dp
 .

The integration by parts formula leads to

A ≡ − 2
α
a
d

dt

∫ ta−
2
α

c0

(ta− 2
α − p)α
α

(f ′(p) + pf ′′(p)) dp+ (ta− 2
α − c0)α
α

c0f
′(c0)

 .
119



CHAPTER 5. A SPECIAL SOLUTION TO TIME-FRACTIONAL STEFAN PROBLEM

By the continuity of second derivatives of f in (c0, k
2
α c0) we have

lim
p↗ta−

2
α

(ta− 2
α − p)α
α

(f ′(p) + pf ′′(p)) = 0.

Therefore, we obtain

A = − 2
α
a1− 2

α

∫ ta−
2
α

c0
(ta− 2

α − p)α−1 (f ′(p) + pf ′′(p)) dp+ (ta− 2
α − c0)α−1c0f

′(c0)
 .

Since f ′ ∈ AC([c0, k
2
α c0]) we get

lim
a↗s(t)

∫ ta−
2
α

c0
(ta− 2

α − p)α−1f ′(p)dp = 0.

Applying these results together with (5.18) in (5.5) we obtain that
α

2 c1t
α
2−1= 1

Γ(α)
2
α
c

1− 2
α

1 t
α
2−1 lim

a↗s(t)

∫ ta−
2
α

c0
(ta− 2

α − p)α−1pf ′′(p)dp+ (ta− 2
α − c0)α−1c0f

′(c0)
.

(5.34)
We note that ∫ ta−

2
α

c0
(ta− 2

α − p)α−1pf ′′(p)dp

= −
∫ ta−

2
α

c0
(ta− 2

α − p)αf ′′(p)dp+ ta−
2
α

∫ ta−
2
α

c0
(ta− 2

α − p)α−1f ′′(p)dp.

Moreover,

lim
a↗s(t)

∣∣∣∣∣∣
∫ ta−

2
α

c0
(ta− 2

α − p)αf ′′(p)dp

∣∣∣∣∣∣ ≤ lim
a↗s(t)

(ta− 2
α − c0)α

∫ ta−
2
α

c0
|f ′′(p)| dp = 0.

Making use of this convergence in (5.34), we obtain(
α

2

)2
c

2
α
1 Γ(α) = c0 lim

a↗s(t)

∫ ta−
2
α

c0
(ta− 2

α − p)α−1f ′′(p)dp+ (ta− 2
α − c0)α−1f ′(c0)

 ,
i.e. (

α

2

)2
c−2

0 Γ(α) = lim
b↘c0

d

db

[∫ b

c0
(b− p)α−1f ′(p)dp

]
,

where we applied the equality∫ b

c0
(b− p)α−1f ′′(p)dp = d

db

[∫ b

c0
(b− p)α−1f ′(p)dp

]
− (b− c0)α−1f ′(c0). (5.35)

Thus, we arrive at (5.26). To prove (5.27), we notice that from the equation (5.24) we get( 2
α

)2
(ξ − c0)αξ2f ′′(ξ)

= (ξ − c0)α
Γ(1− α)

∫ ξ

c0
(ξ − p)−αf ′(p)dp−

[( 2
α

)2
+ 2
α

]
(ξ − c0)αξf ′(ξ) + 1

Γ(1− α) .

The function f ′ is absolutely continuous on a neighborhood of c0 thus, taking the limit at
ξ = c0 we obtain (5.27).
It remains to show that (5.26) implies f ′(c0) = 0. We note that

d

db

∫ b

c0
(b− p)α−1f ′(p)dp = Γ(α)∂1−α

c0 f ′(b).
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We fix ε > 0. Then, from (5.26), there exists x0 > c0 such that for every x ∈ (c0, x0)(
α

2c0

)2
− ε ≤ ∂1−α

c0 f ′(x) ≤
(
α

2c0

)2
+ ε.

We note that, since f ′ is absolutely continuous by Proposition 2.29 we have I1−α
c0 ∂1−α

c0 f ′ = f ′.
Applying I1−α

c0 to the above inequalities and making use of Example 2.2 we obtain that for
every x ∈ (c0, x0)[(

α

2c0

)2
− ε

]
(x− c0)1−α

Γ(2− α) ≤ f ′(x) ≤
[(

α

2c0

)2
+ ε

]
(x− c0)1−α

Γ(2− α) .

The last pair of inequalities is equivalent with

lim
x→c0

f ′(x)
(x− c0)1−α =

(
α

2c0

)2 1
Γ(2− α)

and in particular f ′(c0) = 0. This way we finished the proof of Proposition 5.3.

We note that, the converse statement also holds. Reverting the calculations, we obtain
the following result.

Corollary 5.4. Assume that k > 1, c0 > 0 and function f is such that f ′ ∈ L1(c0,∞),
f ′ ∈ AC([c0, k

2
α c0]), f ∈ C2(c0, k

2
α c0) and for ξ ∈ (c0, k

2
α c0) the equality (5.24) holds.

Then u(x, t) := f(tx− 2
α ) satisfies

Dα
s−1(x)u(x, t) = uxx(x, t)−

1
Γ(1− α)(t− s−1(x))−α for s(t)/k < x < s(t), 0 < t,

where s(t) is defined in (5.18) with c1 given by (5.19). Furthermore, for every t > 0
there holds ux(·, t) ∈ W 1,1(s(t)/k, s(t)) and for every x > 0 there holds ut(x, ·) ∈
AC([s−1(x), s−1(kx)]). If in addition f satisfies (5.25), then u(s(t), t) = 0. Moreover, if f
satisfies (5.26) then u fulfills (5.5). As a consequence of (5.24) and (5.26), (5.27) and
(5.28) hold and then ux(s(t), t) = 0.

5.2. Existence of a self-similar solution

Now, we shall find the solution to the problem (5.24)-(5.26). As it was proven in the
previous section, if the solution exists, then it also satisfies (5.28) so, it is convenient to
consider the space

XR := {f ∈ C1([c0, R]) : f(c0) = f ′(c0) = 0},

for R ∈ (c0,∞). Firstly, we transform the equation (5.24) into a weaker form and we
obtain the existence of the solution to the transformed equation in the space XR.

Let us apply the integral Ic0 to both sides of (5.24). Then, by Proposition 2.22 we have

I2−α
c0 f ′(ξ) =

( 2
α

)2 ∫ ξ

c0
τ 2f ′′(τ)dτ +

[( 2
α

)2
+ 2
α

] ∫ ξ

c0
τf ′(τ)dτ − (ξ − c0)1−α

Γ(2− α) . (5.36)

If we integrate by parts and take into account that f(c0) = 0, f ′(c0) = 0, then we obtain∫ ξ

c0
τf ′(τ)dτ = ξf(ξ)−

∫ ξ

c0
f(τ)dτ
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and ∫ ξ

c0
τ 2f ′′(τ)dτ = ξ2f ′(ξ)− 2

∫ ξ

c0
τf ′(τ)dτ = ξ2f ′(ξ)− 2ξf(ξ) + 2

∫ ξ

c0
f(τ)dτ.

Inserting these calculations in (5.36) we arrive at

I1−α
c0 f(ξ) =

[( 2
α

)2
− 2
α

] ∫ ξ

c0
f(τ)dτ −

[( 2
α

)2
− 2
α

]
ξf(ξ) +

( 2
α

)2
ξ2f ′(ξ)− (ξ − c0)1−α

Γ(2− α) .

We apply again Ic0 to both sides and integrate by parts to get

I2−α
c0 f(ξ) =

[( 2
α

)2
− 2
α

]
I2
c0f(ξ)−

[
3
( 2
α

)2
− 2
α

] ∫ ξ

c0
τf(τ)dτ+

( 2
α

)2
ξ2f(ξ)− (ξ − c0)2−α

Γ(3− α) .

The above equality has the following form

f(ξ) = Kf(ξ) + g(ξ), (5.37)

where

Kf(ξ) =
(
α

2

)2
ξ−2I2−α

c0 f(ξ) +
[
α

2 − 1
]
ξ−2I2

c0f(ξ) +
[
3− α

2

]
ξ−2

∫ ξ

c0
τf(τ)dτ

and
g(ξ) =

(
α

2

)2
ξ−2 (ξ − c0)2−α

Γ(3− α) .

Proposition 5.5. Assume that R ∈ (c0,∞). Then there exists a unique f ∈ XR solution
to (5.37). Furthermore, the obtained solution belongs to C2(c0, R) and it satisfies (5.24)
on (c0, R).

Proof. At first, we note that g ∈ XR and the operator K is linear and bounded on XR.
Furthermore, the range of K is contained in C2([c0, R]), hence, K is compact operator in
XR and by Fredholm alternative the equation (5.37) has a unique solution provided, the
homogeneous equation has only one solution. From the estimate

|Kf(ξ)| ≤
[(
α

2

)2
c−2

0
(ξ − c0)1−α

Γ(2− α) + (1− α

2 )c−2
0 (ξ − c0) + (3− α

2 )c−1
0

] ∫ ξ

c0
|f(τ)|dτ

and Gronwall lemma we deduce that the only solution in XR of f − Kf = 0 is f ≡ 0.
Hence, there exists exactly one f ∈ XR which satisfies (5.37). Since the right hand side
of (5.37) belongs to C2((c0, R)), then so does f . Hence, we may invert the calculations
leading to identity (5.37) and we obtain that f satisfies (5.24) on (c0, R).

Proposition 5.6. For every 0 < c0 < R < ∞ there exists exactly one f belonging to
C1([c0, R]) ∩ C2(c0, R) which satisfies the system (5.24) - (5.28).

Proof. It remains to show that the solution obtained in Proposition 5.5 satisfies (5.26)
and (5.27). We note that (5.27) is a simple consequence of (5.24) and continuity of f ′. Let
us show (5.26). We fix ε > 0. Then, by (5.27) there exists ξ0 > c0 such that for every
c0 < ξ < ξ0 (

α

2

)2 c−2
0

Γ(1− α) − ε ≤ (ξ − c0)αf ′′(ξ) ≤
(
α

2

)2 c−2
0

Γ(1− α) + ε.
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Hence, for every c0 < ξ < ξ0((
α

2

)2 c−2
0

Γ(1− α) − ε
)

(ξ − c0)−α ≤ f ′′(ξ) ≤
((

α

2

)2 c−2
0

Γ(1− α) + ε

)
(ξ − c0)−α.

Applying 1
Γ(1−α)I

α
c0 to both these inequalities and using Example 2.1 we obtain that for

every c0 < ξ < ξ0(
α

2

)2 c−2
0

Γ(1− α) − ε ≤
1

Γ(1− α)I
α
c0f
′′(ξ) ≤

(
α

2

)2 c−2
0

Γ(1− α) + ε.

Hence,

Iαc0f
′′(ξ)→

(
α

2

)2
c−2

0 as ξ → c0.

If we recall that f ′(c0) = 0, then from (5.35) we have

lim
ξ→c0

d

dξ

∫ ξ

c0
(ξ − p)α−1f ′(p)dp = lim

ξ→c0
Γ(α)Iαc0f

′′(ξ) = Γ(α)
(
α

2

)2
c−2

0

and we arrive at (5.26).

From Corollary 5.4 and Proposition 5.6 we deduce the following result.

Corollary 5.7. Let f be the solution to (5.24)-(5.28) given by Proposition 5.6. Then, for
every k ∈ (1,∞) function u(x, t) := f(tx− 2

α ) satisfies

Dα
s−1(x)u(x, t) = uxx(x, t)−

1
Γ(1− α)(t− s−1(x))−α for s(t)/k < x < s(t), t > 0,

u(s(t), t) = 0 for every t > 0,

ṡ(t) = − 1
Γ(α) lim

a↗s(t)

d

dt

[∫ t

s−1(a)
(t− τ)α−1ux(a, τ)dτ

]
for every t > 0,

ux(s(t), t) = 0 for every t > 0,

where s(t) is defined by (5.18) with c1 given by (5.19). Furthermore, for every t > 0 there
hold ux(·, t) ∈ W 1,1(s(t)/k, s(t)) and ut(x, ·) ∈ AC([s−1(x), s−1(kx)]) for every x > 0.

Now, we shall examine the positivity of u given in the above corollary. In the next
section we shall show that f(ξ) > 0 for each ξ > c0 and we determine the limit of f at
infinity.

5.3. Positivity of solution

Proposition 5.8. The function f given in Proposition 5.6 is positive on (c0,∞). Fur-
thermore,

f(ξ) =
∫ c1

ξ−
α
2

∞∑
n=0

(LnG(y))dy, (5.38)

where the constants c0 and c1 are related by the formula (5.19) and

(Lh)(x) := 1
Γ(1− α)

∫ c1

x

∫ c1

µ
(1− p− 2

αµ
2
α )−αh(p)dpdµ, (5.39)
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G(x) = 1
Γ(1− α)

∫ c1

x
(1− c0µ

2
α )−αdµ. (5.40)

The series converges uniformly on [0, c1]. Moreover, if F (µ) := f(µ− 2
α ), then F ∈ C1([0, c1])

and F ′′ ∈ L1(0, c1).

Proof. In order to prove the positivity of f on (c0,∞) we have to transform the equa-
tion (5.24). We introduce µ := ξ−

α
2 and

F (µ) := f(µ− 2
α ) = f(ξ). (5.41)

We note that if ξ ∈ (c0,∞), then µ ∈ (0, c1) and f(c0) = f ′(c0) = 0 implies F (c1) =
F ′(c1) = 0. We will rewrite the identity (5.24) in terms of function F . We note that

F ′(µ) = − 2
α
µ−

2
α
−1f ′(µ− 2

α ) (5.42)

and
F ′′(µ) = 2

α
( 2
α

+ 1)µ− 2
α
−2f ′(µ− 2

α ) + ( 2
α

)2µ−
2
α
−1µ−

2
α
−1f ′′(µ− 2

α ).

Hence,

µ2F ′′(µ) =
[( 2
α

)2
+ 2
α

]
ξf ′(ξ) +

( 2
α

)2
ξ2f ′′(ξ).

Furthermore,∫ c1

µ
(µ− 2

α − p−
2
α )−αF ′(p)dp = − 2

α

∫ c1

µ
(µ− 2

α − p−
2
α )−αp− 2

α
−1f ′(p− 2

α )dp.

Applying the substitution p− 2
α = w we get∫ c1

µ
(µ− 2

α − p−
2
α )−αF ′(p)dp = −

∫ µ−
2
α

c0
(µ− 2

α − w)−αf ′(w)dw = −
∫ ξ

c0
(ξ − w)−αf ′(w)dw.

Inserting the result of these calculations in (5.24) we find out that function F satisfies

F ′′(µ) = − 1
Γ(1− α)µ

−2
∫ c1

µ
(µ− 2

α − p−
2
α )−αF ′(p)dp+ 1

Γ(1− α)µ
−2(µ− 2

α − c0)−α,

which is equivalent with

F ′′(µ) = − 1
Γ(1− α)

∫ c1

µ
(1− p− 2

αµ
2
α )−αF ′(p)dp+ 1

Γ(1− α)(1− c0µ
2
α )−α. (5.43)

Integrating this equality from x to c1 and recalling that F ′(c1) = 0 we get

F ′(x) = 1
Γ(1− α)

∫ c1

x

∫ c1

µ
(1−p− 2

αµ
2
α )−αF ′(p)dpdµ− 1

Γ(1− α)

∫ c1

x
(1−c0µ

2
α )−αdµ. (5.44)

We are going to obtain an explicit formula for F and we will show that F is positive in
[0, c1]. Since f ′ is continuous in [c0,∞) then (5.42) implies that F ′ ∈ C(0, c1].

Then, identity (5.44) may be written as

F ′(x) = (LF ′)(x)−G(x) (5.45)

where the operator L and function G are defined by (5.39) and (5.40), respectively. We
apply L to both sides of (5.45) and we deduce that

F ′(x) = (L2F ′)(x)− (G(x) + LG(x)).
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Iterating this procedure we obtain that for every n ∈ N and every x ∈ (0, c1) there holds

F ′(x) = (LnF ′)(x)−
n∑
k=0

(LkG)(x). (5.46)

Let us show that for every fixed x0 ∈ (0, c1)

lim
n→∞

max
x∈[x0,c1]

|(LnF ′)(x)| = 0. (5.47)

At first we note that for any x0 ∈ [0, c1] and h ∈ C([x0, c1]) there holds

‖Lnh‖C([x0,c1]) ≤ ‖h‖C([x0,c1]) ‖L
n1‖

C([x0,c1])
. (5.48)

Let us focus on the estimate of Ln1. By the Fubini theorem we have
1

Γ(1− α)

∫ c1

x

∫ c1

µ
(1− p− 2

αµ
2
α )−αdpdµ = 1

Γ(1− α)

∫ c1

x

∫ p

x
(1− p− 2

αµ
2
α )−αdµdp.

We note that ∫ p

x
(1− p− 2

αµ
2
α )−αdµ ≤ α

2B(α2 , 1− α)p, (5.49)

where we applied the substitution w := p−
2
αµ

2
α . Hence, we obtain

0 < L1(x) ≤
Γ(1 + α

2 )
Γ(1− α

2 )c1(Ix1)(c1) for x ∈ [0, c1). (5.50)

We shall show by induction that

0 < Ln1(x) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )c1

]n
(Inx 1)(c1) for x ∈ [0, c1) (5.51)

for each n ∈ N. Indeed, suppose that (5.51) holds for n = k − 1 and then we have

Lk1(x) = LLk−11(x) = 1
Γ(1− α)

∫ c1

x

∫ p

x
(1− p− 2

αµ
2
α )−αdµ(Lk−11)(p)dp

≤ 1
Γ(1− α)

[
Γ(1 + α

2 )
Γ(1− α

2 )c1

]k−1 ∫ c1

x

∫ p

x
(1− p− 2

αµ
2
α )−αdµ(Ik−1

p 1)(c1)dp

≤ 1
Γ(1− α)

[
Γ(1 + α

2 )
Γ(1− α

2 )c1

]k−1 ∫ c1

x

α

2B(α2 , 1− α)p(Ik−1
p 1)(c1)dp,

where in the last inequality we used (5.49). Thus, we have

Lk1(x) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )c1

]k ∫ c1

x
(Ik−1
p 1)(c1)dp =

[
Γ(1 + α

2 )
Γ(1− α

2 )c1

]k
Ikx1(c1)

and (5.51) is proven. We note that

(Inx 1)(c1) = 1
Γ(n)

∫ c1

x
(c1 − τ)n−1dτ = (c1 − x)n

n! (5.52)

hence, by (5.51) we get

0 < Ln1(x) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )c

2
1

]n 1
n! . (5.53)

Applying the estimate (5.53) in (5.48) we obtain that

max
x∈[x0,c1]

|(LnF ′)(x)| ≤ max
x∈[x0,c1]

|F ′(x)| max
x∈[x0,c1]

|Ln1(x)|

≤ max
x∈[x0,c1]

|F ′(x)|
(

Γ(1 + α
2 )

Γ(1− α
2 )c

2
1

)n 1
n!
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and due to the presence of factorial function in the denominator the convergence (5.47)
holds. We will show that the series ∑∞k=0(LkG)(x) is uniformly convergent on [0, c1].
Indeed, applying the substitution w := c0µ

2
α in the definition of G we obtain that

G(x) = 1
Γ(1− α)

α

2 c1

∫ 1

c0x
2
α

(1− w)−αw α
2−1dw.

Thus,

max
x∈[0,c1]

|G(x)| ≤
Γ(1 + α

2 )
Γ(1− α

2 )c1.

Applying estimates (5.48) and (5.53) for x0 = 0 we arrive at

max
x∈[0,c1]

|LnG(x)| ≤
Γ(1 + α

2 )
Γ(1− α

2 )c1

(
Γ(1 + α

2 )
Γ(1− α

2 )c
2
1

)n 1
n! =: an.

We note that
an+1

an
=

Γ(1 + α
2 )

Γ(1− α
2 )c

2
1

1
n+ 1 → 0 as n→∞.

Hence, by comparison criterion and d’Alembert criterion for convergence of the series we
obtain that ∑∞k=0(LkG)(x) is uniformly convergent on [0, c1]. Finally, we may pass to the
limit in (5.46) to obtain

F ′(x) = −
∞∑
n=0

(LnG)(x) for every x ∈ [0, c1], (5.54)

where the right hand side converges uniformly. As a consequence, F ∈ C1([0, c1]) and by
(5.43) we get F ′′ ∈ L1(0, c1).

We note that LnG(x) > 0 for [0, c1) thus,

F ′ < 0 on [0, c1). (5.55)

Applying the fundamental theorem of calculus, we may write

F (x) = −
∫ c1

x
F ′(y)dy =

∫ c1

x

∞∑
n=0

(LnG)(y)dy for every x ∈ [0, c1]. (5.56)

Thus, we have obtained that F is positive on [0, c1). We recall that the functions f and F
are related by the equality (5.41) therefore, we proved the claim.

From Corollary 5.7 and Proposition 5.8 we arrive at the following conclusion.

Corollary 5.9. Let c1 > 0 and s(t) = c1t
α
2 . Let us define

u(x, t) :=
∫ c1

xt−
α
2

∞∑
n=0

(LnG(y))dy for x ∈ [0, s(t)], t > 0,

where L and G are given by (5.39) and (5.40), respectively. Then, the above series
converges uniformly and for every n ∈ N there holds LnG(y) > 0 for every y ∈ [0, c1).
Moreover, u(x, t) satisfies

Dα
s−1(x)u(x, t) = uxx(x, t)−

1
Γ(1− α)(t− s−1(x))−α for 0 < x < s(t),

u(s(t), t) = 0,

ṡ(t) = − 1
Γ(α) lim

a↗s(t)

d

dt

[∫ t

s−1(a)
(t− τ)α−1ux(a, τ)dτ

]
,
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ux(s(t), t) = 0,

for every t > 0. Finally, from equality u(x, t) = F (xt−α2 ) we deduce that for every t > 0
u(·, t) ∈ W 2,1(0, s(t)) and for every x > 0 there holds ut(x, ·) ∈ C([s−1(x),∞)).

Corollary 5.10. Functions u and s defined in Corollary 5.9 satisfy ux < 0, ut > 0 in
{(x, t) ∈ R× (0,∞) : 0 < x < s(t)},

∀ x > 0 ux(x, ·) ∈ L∞(s−1(x),∞) ∩ ACloc([s−1(x),∞)) (5.57)

and
∀ t > 0 ut(·, t) ∈ L1(0, s(t)) and Dα

s−1(·)u(·, t) ∈ L1(0, s(t)). (5.58)

In particular, the pair (u, s) satisfies the assumptions (A1) - (A3).

Proof. At first, we recall that

ux(x, t) = t−
α
2F ′(µ), ut(x, t) = −α2 xt

−α2−1F ′(µ),

where µ = xt−
α
2 . Hence, by (5.55) we infer ux < 0, ut > 0. Since, F ′ ∈ C([0, c1]) and

for fixed x > 0 µ is continuous and bounded function of t on [s−1(x),∞), we obtain
that ux(x, ·) ∈ L∞(s−1(x),∞) ∩ C([s−1(x),∞)). Let us show that ux(x, ·) is absolutely
continuous. We may calculate

ux,t(x, t) = −α2 t
−α2−1F ′(xt−α2 )− α

2 t
−αxF ′′(xt−α2 ).

Hence, for every t∗ > 0∫ t∗

s−1(x)
|ux,t(x, t)| dt =

∫ t∗

c0x
2
α

∣∣∣∣−α2 t−α2−1F ′(xt−α2 )− α

2 t
−αxF ′′(xt−α2 )

∣∣∣∣ dt.
Applying the substitution µ = xt−

α
2 we have∫ t∗

s−1(x)
|ux,t(x, t)| dt ≤

∫ c1

xt∗−
α
2
x−1 |F ′(µ)| dµ+

∫ c1

xt∗−
α
2
x

2
α
−1µ1− 2

α |F ′′(µ)| dµ <∞,

because from Proposition 5.8 we have F ′ ∈ C([0, c1]), F ′′ ∈ L1(0, c1). To prove (5.58), we
note that for every t > 0

‖ut(·, t)‖L1(0,s(t)) =
∫ s(t)

0
ut(x, t)dx = −α2

∫ c1t
α
2

0
xt−

α
2−1F ′(xt−α2 )dx

= −α2 t
α
2−1

∫ c1

0
pF ′(p)dp <∞,

because F ′ ∈ C([0, c1]). Using this results we obtain further,∫ s(t)

0

∣∣∣Dα
s−1(x)u(x, t)

∣∣∣ dx = 1
Γ(1− α)

∫ s(t)

0

∫ t

s−1(x)
(t− τ)−αut(x, τ)dτdx

= 1
Γ(1− α)

∫ t

0
(t−τ)−α

∫ s(τ)

0
ut(x, τ)dxdτ = − 1

Γ(1− α)
α

2

∫ c1

0
pF ′(p)dp

∫ t

0
(t−τ)−ατ α2−1dτ

= −
Γ(1 + α

2 )
Γ(1− α

2 )

∫ c1

0
pF ′(p)dp <∞.

Corollary 5.9 together with (5.57) and (5.58) implies that the pair (u, s) satisfies the
assumptions (A1) - (A3).
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5.4. Boundary condition

By Corollary 5.9, for each c1 > 0 we have obtained a self-similar solution to time-fractional
Stefan problem (u, s)c1 such that

u(0, t) =
∫ c1

0

∞∑
n=0

(LnG(y))dy. (5.59)

Now, we address to Dirichlet boundary condition (5.4). We investigate whether for given
γ > 0 it is possible to find c1 > 0 such that (u, s)c1 satisfy (5.2)-(5.5).

For this purpose we write explicitly the dependence of solution on c1. Recall, that from
(5.39), (5.40) and the Fubini theorem we have

(Lc1h)(y) = 1
Γ(1− α)

∫ c1

y

∫ p

y
(1− p− 2

αµ
2
α )−αdµh(p)dp, (5.60)

Gc1(y) = 1
Γ(1− α)

∫ c1

y
(1− c−

2
α

1 µ
2
α )−αdµ. (5.61)

The next proposition provides the representation (5.7) of the self-similar solution.

Proposition 5.11. If c1 is positive and s(t) = c1t
α
2 , then for t > 0 and x ∈ [0, s(t)] we

have ∫ c1

xt−
α
2

∞∑
n=0

(Lnc1Gc1(y))dy =
∫ c1

xt−
α
2
H(p, xt−α2 )Gc1(p)dp, (5.62)

where the function H is defined by (5.9)-(5.12). Furthermore, H − 1 is positive on the set
W := {(p, x) : 0 ≤ x < p} and H is continuous on W .

Proof. We will find another recursive formula for Lnc1Gc1 . For 0 ≤ y ≤ p <∞ we denote

M1(p, y) := 1
Γ(1− α)

∫ p

y
(1− p− 2

αµ
2
α )−αdµ. (5.63)

Then, we may write
(Lc1h)(y) =

∫ c1

y
M1(p, y)h(p)dp.

Further, we obtain

(L2
c1Gc1)(y) =

∫ c1

y
M1(p, y)(Lc1Gc1)(p)dp =

∫ c1

y

∫ r

y
M1(p, y)M1(r, p)dpGc1(r)dr.

Thus, if we denote
M2(r, y) :=

∫ r

y
M1(p, y)M1(r, p)dp (5.64)

then,
(L2

c1Gc1)(y) =
∫ c1

y
M2(p, y)Gc1(p)dp.

By induction we obtain

(Lnc1Gc1)(y) =
∫ c1

y
Mn(p, y)Gc1(p)dp for n ≥ 1 (5.65)

where we set
Mn(p, y) :=

∫ p

y
M1(a, y)Mn−1(p, a)da for n ≥ 2. (5.66)
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Now, we shall obtain the estimate for Mn. By (5.49) we get

M1(p, y) ≤
Γ(1 + α

2 )
Γ(1− α

2 )p. (5.67)

Then,

M2(p, y) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )

]2

p
∫ p

y
ada ≤

[
Γ(1 + α

2 )
Γ(1− α

2 )p
]2

(Iy1)(p).

We prove by induction that

Mn(p, y) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )p

]n
(In−1
y 1)(p), n ≥ 2. (5.68)

Indeed, if

Mk(p, y) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )p

]k
(Ik−1
y 1)(p),

then by (5.67) we obtain

Mk+1(p, y) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )p

]k ∫ p

y

Γ(1 + α
2 )

Γ(1− α
2 )a(Ik−1

a 1)(p)da

≤
[

Γ(1 + α
2 )

Γ(1− α
2 )p

]k+1 ∫ p

y
(Ik−1
a 1)(p)da =

[
Γ(1 + α

2 )
Γ(1− α

2 )p
]k+1

(Iky 1)(p)

hence, we arrive at (5.68). Applying (5.52) in (5.68) we get the following estimate

Mn(p, y) ≤
[

Γ(1 + α
2 )

Γ(1− α
2 )p

]n
pn−1

(n− 1)! for n ≥ 2. (5.69)

Let us define
N(p, y) :=

∞∑
n=1

Mn(p, y), 0 ≤ y ≤ p <∞. (5.70)

If R > 0, then by (5.69) the series converges uniformly on the set

WR = {(p, y) : 0 ≤ y ≤ p ≤ R}. (5.71)

In particular, N is continuous, non-negative and bounded on WR for each R positive.
If we sum over n both sides of (5.65), then we get

∞∑
n=1

Lnc1Gc1(y) =
∫ c1

y
N(p, y)Gc1(p)dp. (5.72)

Therefore, we have∫ c1

xt−
α
2

∞∑
n=0

(Lnc1Gc1(y))dy =
∫ c1

xt−
α
2
Gc1(y)dy +

∫ c1

xt−
α
2

∫ c1

y
N(p, y)Gc1(p)dpdy.

If we denote
H(p, x) := 1 +

∫ p

x
N(p, y)dy for 0 ≤ x ≤ p, (5.73)

then after applying Fubini theorem we obtain (5.62).

Now, we shall investigate the dependence of the self-similar solution obtained in
Corollary 5.9 from the parameter c1. For this purpose we apply the representation given
by Proposition 5.11 and we denote

Fc1(x) =
∫ c1

x
H(p, x)Gc1(p)dp. (5.74)
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Having in mind that the function H is continuous and bounded, we will examine the
continuity of the mapping

c1 7→ Fc1(x) =
∫ c1

x
H(p, x)Gc1(p)dp. (5.75)

The precise formulation is stated below.

Proposition 5.12. Assume that c1 is positive. Then for every x ∈ [0, c1)

lim
c1→c1

Fc1(x) = Fc1(x). (5.76)

Moreover, we have
lim
c1↘0

Fc1(0) = 0 (5.77)

and
lim
c1↗∞

Fc1(0) =∞. (5.78)

Furthermore, if γ > 0, then there exists positive c1 such that

Fc1(0) =
∫ c1

0
H(p, 0)Gc1(p)dp = γ. (5.79)

Proof. Let us fix x ∈ [0, c1) and assume that c1 > c1. Then by formula (5.74) we get

Fc1(x)− Fc1(x) =
∫ c1

c1
H(p, x)Gc1(p)dp+

∫ c1

x
H(p, x)[Gc1(p)−Gc1(p)]dp.

We note that H is bounded on {(p, x) : 0 ≤ x ≤ p ≤ c1} and

|Gc1(p)| ≤
Γ(1 + α

2 )
Γ(1− α

2 )c1

hence, the first integral converges to zero, if c1 ↘ c1. Next, we recall that after substitution
w := c

− 2
α

1 µ
2
α we have

Gc1(p) = α

2Γ(1− α)c1

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αw α
2−1dw

and hence
Gc1(p)−Gc1(p)

= α

2Γ(1− α)

(c1 − c1)
∫ 1

c
− 2
α

1 p
2
α

(1− w)−αw α
2−1dw + c1

∫ c
− 2
α

1 p
2
α

c
− 2
α

1 p
2
α

(1− w)−αw α
2−1dw

 .
The first integral is uniformly bounded by B(1− α, α2 ) hence, the first term converges to
zero, if c1 ↘ c1. The second integral also converges to zero because∫ c

− 2
α

1 p
2
α

c
− 2
α

1 p
2
α

(1− w)−αw α
2−1dw ≤ sup

W⊂[0,1],|W |≤( c1
c1

)
2
α−1

∫
W

(1− w)−αw α
2−1dw → 0,

if c1 ↘ c1. The case c1 < c1 may be shown similarly. Therefore, we obtained (5.76).
To get (5.77) we note that

Fc1(0) =
∫ c1

0
H(p, 0)Gc1(p)dp ≤ ‖H‖L∞(Wc1 )

Γ(1 + α
2 )

Γ(1− α
2 )c1 → 0,

if c1 ↘ 0.

130



5.5. CONVERGENCE TO A SOLUTION TO THE CLASSICAL STEFAN PROBLEM

Recalling that N is non-negative, we may write

Fc1(0) ≥
∫ c1

0
Gc1(p)dp = α

2Γ(1− α)c1

∫ c1

0

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αw α
2−1dwdp

≥ α

2Γ(1− α)c1

∫ c1

0

∫ 1

c
− 2
α

1 p
2
α

(1− w)−αdwdp = α

2Γ(2− α)c1

∫ c1

0
(1− c−

2
α

1 p
2
α )1−αdp

=

(
α
2

)2
c2

1

Γ(2− α)B(2− α, α2 ) =
αΓ(1 + α

2 )
2Γ(2− α

2 ) c
2
1 →∞ as c1 →∞

and we proved (5.78).
Finally, it remains to prove that for each γ ∈ (0,∞) there exists c1 ∈ (0,∞) such that

Fc1(0) = γ.

From (5.76) we deduce the continuity of (0,∞) 3 c1 7→ Fc1(0). Applying the Darboux
property together with (5.77), (5.78) we deduce that this map is onto (0,∞).

To prove Theorem 5.1, it remains to collect the obtained results.

Proof of Theorem 5.1. The result is a direct consequence of Corollary 5.9, Corollary 5.10,
Proposition 5.11 and Proposition 5.12.

Proof of Remark 5.1. We note that Remark 5.1 is a simple consequence of Theorem 5.1.
Indeed, from the formula (5.7) we obtain that

ux(0, t) = −t−α2
[
c1

Γ(1 + α
2 )

Γ(1− α
2 ) +

∫ c1

0
N(p, 0)Gc1(p)dp

]
=: −t−α2 g(c1).

Since N is continuous and bounded on WR for every R > 0 and Gc1 is continuous
with respect to c1, we obtain that g is continuous as well. Furthermore, g(0) = 0 and
limc1→∞ g(c1) =∞. Thus, Remark 5.1 follows from the Darboux property.

5.5. Convergence to a solution to the classical Stefan problem

We finish this chapter with a result concerning the convergence of self-similar solutions
to the fractional Stefan problem to a solution to the classical Stefan problem. To formulate
the result we introduce a new notation. We fix c1 > 0 and for α ∈ (0, 1) we denote by sα
and uα the solution to fractional Stefan problem (5.2) - (5.5) with γ =

∫ c1
0 H(p, 0)Gc1(p)dp

given by (5.6) and (5.7). Then we set

ũα(x, t) =

 uα(x, t) for t > 0, x ∈ [0, c1t
α
2 ]

0 for t > 1, x ∈ [c1t
α
2 , c1t

1
2 ].

(5.80)

Theorem 5.13. Let us fix 0 < t∗ < t∗ <∞. If α ↗ 1, then ũα converges uniformly on
the set {(x, t) : t ∈ [t∗, t∗], x ∈ [0, c1t

1
2 ]} to u1, where u1 is a solution to the classical

Stefan problem corresponding to the free boundary s1 := c1t
1
2 , i.e. s1 and u1 satisfy

u1,t(x, t)− u1,xx(x, t) = 0 for t > 0, x ∈ (0, s1(t)), (5.81)
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u1(s1(t), t) = 0 for t > 0, (5.82)

u1(0, t) = 2aea2
∫ a

0
e−w

2
dw for t > 0, where a = c1

2 , (5.83)

d

dt
s1(t) = −u1,x(s1(t), t) for t > 0 (5.84)

and u1 is given by the formula

u1(x, t) = 2aea2
∫ a

x
2
√
t

e−w
2
dw. (5.85)

Furthermore, (5.2) converges in the sense of distributions to (5.81).

Proof. Let us fix c1 > 0. We recall the representation of solutions to the system (5.2) -
(5.5) with γ =

∫ c1
0 H(p, 0)Gc1(p)dp given in Corollary 5.9:

sα(t) = c1t
α
2 ,

uα(x, t) =
∫ c1

xt−
α
2

∞∑
n=0

(Lnc1,αGc1,α(y))dy for x ∈ [0, sα(t)], t > 0,

where we added a subscript α to emphasize that the solution depends on α. We rewrite
also the formulas (5.61)-(5.66) with a new subscript α. Then we have

M1,α(p, y) := 1
Γ(1− α)

∫ p

y
(1− p− 2

αµ
2
α )−αdµ,

Mn,α(p, y) :=
∫ p

y
M1,α(a, y)Mn−1,α(p, a)da for n ≥ 2

for 0 ≤ y ≤ p and
Gc1,α(y) = 1

Γ(1− α)

∫ c1

y
(1− c−

2
α

1 µ
2
α )−αdµ,

(Lnc1,αGc1,α)(y) =
∫ c1

y
Mn,α(p, y)Gc1,α(p)dp for n ≥ 1 and 0 ≤ y ≤ c1.

We would like to pass to the limit with α in the formula for uα. Hence, at first we shall
calculate the limit as α ↗ 1 in the formulas for Mn,α, Gc1,α and Lnc1,αGc1,α. After a
substitution q := p−

2
αµ

2
α we get

M1,α(p, y) = p
Γ(1 + α

2 )
Γ(1− α

2 ) −
α
2 p

Γ(1− α)

∫ p−
2
α y

2
α

0
(1− q)−αq α2−1dq.

We note that

lim
α↗1

α
2 p

Γ(1− α)

∫ p−
2
α y

2
α

0
(1− q)−αq α2−1dq = 0 for 0 ≤ y < p,

because for 0 ≤ y < p we have
α
2 p

Γ(1− α)

∫ p−
2
α y

2
α

0
(1− q)−αq α2−1dq ≤

α
2 p

Γ(1− α)(1− p− 2
αy

2
α )−α

∫ p−
2
α y

2
α

0
q
α
2−1dq

= y

Γ(1− α)(1− p− 2
αy

2
α )−α → 0 as α→ 1.
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Then we denote

M1,1(p, y) := lim
α↗1

M1,α(p, y) =


1
2p for 0 ≤ y < p,

0 for 0 < y = p.
(5.86)

From the definition of Gc1,α we infer that the same calculations as for M1,α lead to

Gc1,1(p, y) := lim
α↗1

Gc1,α(p, y) =


1
2c1 for 0 ≤ y < c1,

0 for y = c1
(5.87)

and
0 ≤ Gc1,α(y) ≤ c1, for y ∈ [0, c1], α ∈ (0, 1]. (5.88)

From (5.67) and (5.69) we deduce that

0 ≤Mn,α(p, y) ≤ p2n−1

(n− 1)! for α ∈ (0, 1), 0 ≤ y ≤ p, n ≥ 1. (5.89)

The above estimates allow us to apply the Lebesgue’s Dominated Convergence Theorem
(LDCT) and we get

Mn,1(p, y) := lim
α↗1

Mn,α(p, y) =
∫ p

y
M1,1(a, y)Mn−1,1(p, a)da for 0 ≤ y ≤ p, n ≥ 2.

(5.90)
Furthermore, the estimate (5.89) gives

0 ≤Mn,1(p, y) ≤ p2n−1

(n− 1)! for 0 ≤ y ≤ p, n ≥ 1. (5.91)

Applying again (5.88), (5.89) together with LDCT we obtain

(Lnc1,1Gc1,1)(y) := lim
α↗1

(Lnc1,αGc1,α)(y) =
∫ c1

y
Mn,1(p, y)Gc1,1(p)dp for 0 ≤ y ≤ c1, n ≥ 1.

(5.92)
Moreover, making use of (5.88), (5.89) and (5.91) we arrive at the following estimate

0 ≤ (Lnc1,αGc1,α)(y) ≤ c2n+1
1
n! for 0 ≤ y ≤ c1, n ≥ 0, α ∈ (0, 1]. (5.93)

Taking advantage of (5.92) and (5.93) we get that

lim
α↗1

∞∑
n=0

(Lnc1,αGc1,α)(y) =
∞∑
n=0

(Lnc1,1Gc1,1)(y) for y ∈ [0, c1]. (5.94)

Recalling that ũα was defined in 5.80, we introduce the following definition

u1(x, t) := lim
α↗1

ũα(x, t), t > 0, x ∈ [0, c1t
1
2 ]. (5.95)

We shall characterize the above limit. If x ∈ [0, c1t
1
2 ), then we note that

u1(x, t) := lim
α↗1

∫ c1

xt−
α
2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy =
∫ c1

xt−
1
2

∞∑
n=0

(Lnc1,1Gc1,1)(y)dy, (5.96)

where we applied (5.93), (5.94) together with LDCT. If x = c1t
1
2 , then for t ≥ 1 we have

ũα(c1t
1
2 , t) = 0 so, u1(c1t

1
2 , t) = 0. Finally, if x = c1t

1
2 and t ∈ (0, 1), then

ũα(c1t
1
2 , t) = lim

α↗1
uα(c1t

1
2 , t) = lim

α↗1

∫ c1

c1t
1−α

2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy = 0,

where we again applied (5.93). Therefore, we deduce that

u1(x, t) =
∫ c1

xt−
1
2

∞∑
n=0

(Lnc1,1Gc1,1)(y)dy, for t > 0, x ∈ [0, c1t
1
2 ]. (5.97)
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Our next aim is to prove a uniform convergence of ũα to u1 on every compact subset of
{(x, t) : 0 < t <∞, x ∈ [0, c1t

1
2 ]}. To this end we fix 0 < t∗ < t∗ and we denote

Qt∗,t∗ = {(x, t) : t ∈ [t∗, t∗], x ∈ [0, c1t
1
2 ]}.

Then, from uα(c1t
α
2 , t) = 0 we deduce that ũα ∈ C(Qt∗,t∗). We shall show that ũα converges

uniformly to u1 on Qt∗,t∗ . Let us fix ε > 0. Without loss of generality, we may assume
that ε < 2c2

1e
c21(1− t

1
2∗ ) in case of t∗ < 1 and ε < 2c2

1e
c21(1− t∗− 1

2 ) in case of t∗ > 1. Then,
from (5.93), (5.94) and LDCT we deduce that there exists α0 ∈ (0, 1) such that∫ c1

0

∣∣∣∣∣
∞∑
n=0

(Lnc1,1Gc1,1)(y)−
∞∑
n=0

(Lnc1,αGc1,α)(y)
∣∣∣∣∣ dy ≤ ε

2 for all α ∈ (α0, 1). (5.98)

To estimate (∗) := |ũα(x, t)− u1(x, t)| for (x, t) ∈ Qt∗,t∗ , we have to consider three cases.

1. Case x ∈ [0, c1t
1
2 ] and t ≤ 1. In this case we have t∗ ≤ 1 and we may write

(∗) = |uα(x, t)− u1(x, t)| =
∣∣∣∣∣
∫ c1

xt−
α
2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy −
∫ c1

xt−
1
2

∞∑
n=0

(Lnc1,1Gc1,1)(y)dy
∣∣∣∣∣

≤
∫ xt−

1
2

xt−
α
2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy +
∫ c1

0

∣∣∣∣∣
∞∑
n=0

(Lnc1,αGc1,α)(y)−
∞∑
n=0

(Lnc1,1Gc1,1)(y)
∣∣∣∣∣ dy

≤ c1e
c21x(t− 1

2 − t−
α
2 ) + ε

2 ,

where we applied (5.93) and (5.98). We define α1 ∈ (0, 1) by the equality
c2

1e
c21(1− t

1−α1
2∗ ) = ε

2 . Then, for α ∈ (max{α0, α1}, 1) we have

(∗) ≤ c2
1e
c21t

1
2 (t− 1

2 − t−
α
2 ) + ε

2 = c2
1e
c21(1− t

1−α
2 ) + ε

2
≤ c2

1e
c21(1− t

1−α
2∗ ) + ε

2 ≤ c2
1e
c21(1− t

1−α1
2∗ ) + ε

2 = ε.

2. Case x ∈ [c1t
α
2 , c1t

1
2 ] and t ≥ 1. In this case we have t∗ ≥ 1 and (∗) = u1(x, t). We

define α2 ∈ (0, 1) by the equality c2
1e
c21(1− t∗

α2−1
2 ) = ε

2 . Then for α ∈ (α2, 1) we have

(∗) =
∫ c1

xt−
1
2

∞∑
n=0

(Lnc1,1Gc1,1)(y)dy ≤ c1e
c21(c1 − xt−

1
2 ) ≤ c2

1e
c21(1− tα−1

2 ) ≤

≤ c2
1e
c21(1− t∗

α−1
2 ) ≤ c2

1e
c21(1− t∗

α2−1
2 ) = ε

2 ,

where we applied (5.93).
3. Case x ∈ [0, c1t

α
2 ] and t ≥ 1. In this case we have t∗ ≥ 1 and

(∗) = |uα(x, t)− u1(x, t)| =
∣∣∣∣∣
∫ c1

xt−
α
2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy −
∫ c1

xt−
1
2

∞∑
n=0

(Lnc1,1Gc1,1)(y)dy
∣∣∣∣∣

≤
∫ xt−

α
2

xt−
1
2

∞∑
n=0

(Lnc1,αGc1,α)(y)dy +
∫ c1

0

∣∣∣∣∣
∞∑
n=0

(Lnc1,αGc1,α)(y)−
∞∑
n=0

(Lnc1,1Gc1,1)(y)
∣∣∣∣∣ dy

≤ c1e
c21x(t−α2 − t− 1

2 ) + ε

2 ,

where we applied (5.93) and (5.98). Then, for α ∈ (max{α0, α2}, 1) we have

(∗) ≤ c2
1e
c21t

α
2 (t−α2 − t− 1

2 ) + ε

2 = c2
1e
c21(1− t

α−1
2 ) + ε

2
≤ c2

1e
c21(1− t∗

α−1
2 ) + ε

2 ≤ c2
1e
c21(1− t∗

α2−1
2 ) + ε

2 = ε.
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We note that in the calculations above the constant α1 = α1(t∗) appears only in the case
when t∗ ≤ 1 and similarly α2 = α2(t∗) appears only in the case when t∗ ≥ 1. Hence in
general case if t∗ > 1 we set α1 = 0 and if t∗ < 1 we set α2 = 0. Then we may write that
for any 0 < t∗ < t∗ and any ε small enough, if α ∈ (max{α0, α1, α2}, 1) then

|ũα(x, t)− u1(x, t)| ≤ ε for (x, t) ∈ Qt∗,t∗

and as a consequence, u1 is continuous on Qt∗,t∗ .
Let us calculate the formula for u1. At first, we will show by induction that

Mn,1(p, y) = 2p
4n(n− 1)!(p

2 − y2)n−1 for 0 ≤ y < p, n ∈ N. (5.99)

From (5.86) we see that the formula in (5.99) is fulfilled for n = 1. Let us fix a natural
number k ≥ 2. We assume that for any l ∈ N such that 1 ≤ l ≤ k we have

Ml,1(p, y) = 2p
4l(l − 1)!(p

2 − y2)l−1.

Then

Mk+1,1(p, y) = 1
2

∫ p

y
aMk,1(p, a)da = 2p

2 · 4k(k − 1)!

∫ p

y
a(p2 − a2)k−1da.

Applying the substitution a2 = w we have

Mk+1,1(p, y) = p

2 · 4k(k − 1)!

∫ p2

y2
(p2 − w)k−1dw = 2p

4k+1k! (p
2 − y2)k

and we arrive at the formula (5.99) for n = k + 1. Thus, by the principle of mathematical
induction (5.99) is proven.
Let us calculate Lnc1Gc1,1. Making use of (5.92) and (5.99) we get

Lnc1Gc1,1(y) =
∫ c1

y
Mn,1(p, y)Gc1,1(p)dp = c1

2
2

4n(n− 1)!

∫ c1

y
p(p2 − y2)n−1dp.

Applying the substitution p2 = w we have

Lnc1Gc1,1(y) = c1

2
1

4n(n− 1)!

∫ c21

y2
(w−y2)n−1dw = c1

2 · 4nn! (c
2
1−y2)n = c1

2
1
n!

((
c1

2

)2
−
(
y

2

)2
)n
.

Hence,

u1(x, t) =
∫ c1

x√
t

∞∑
n=0

Lnc1Gc1,1(y)dy = c1

2

∫ c1

x√
t

∞∑
n=0

1
n!

((
c1

2

)2
−
(
y

2

)2
)n

= c1

2

∫ c1

x√
t

e( c12 )2−( y2 )2
dy = c1

2 e
( c12 )2

∫ c1

x√
t

e−( y2 )2
dy.

We substitute y = 2w to get

u1(x, t) = c1e
( c12 )2

∫ c1
2

x
2
√
t

e−w
2
dw.

Setting a = c1
2 we arrive at

u1(x, t) = 2aea2
∫ a

x
2
√
t

e−w
2
dw.

Therefore, the function u1 together with s1 = c1t
1
2 is a self-similar solution to the classical

Stefan problem (5.81) - (5.84). For a construction to a self-similar solution to the classical
Stefan problem we refer to [1, Example 1, Chapter 1.3].
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To complete the proof of Theorem 5.13 we will show the convergence of (5.2) to (5.81) in
the sense of distributions. Let us rewrite (5.2) in terms of ũα and sα:

Dα
s−1
α (x)uα(x, t)− uα,xx(x, t) = − 1

Γ(1− α)(t− s−1
α (x))−α for t > 0, x ∈ (0, c1t

α
2 ).

(5.100)
We fix ϕ ∈ C∞c (Qt∗,t∗) and we multiply (5.100) by ϕ. Then we integrate the equation over
Qsα,t∗ and we arrive at∫ sα(t∗)

0

∫ t∗

s−1
α (x)

Dα
s−1
α (x)uα(x, t)ϕ(x, t)dtdx−

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

uα,xx(x, t)ϕ(x, t)dtdx =

− 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

(t− s−1
α (x))−αϕ(x, t)dtdx. (5.101)

We shall calculate the limit in all the above terms. Firstly, we note that uα(x, s−1
α (x)) = 0

and by Theorem 5.1 we have uα(x, ·) ∈ AC[s−1
α (x), t∗]. Hence, applying (2.15) and

Remark 2.6 we may write∫ sα(t∗)

0

∫ t∗

s−1
α (x)

Dα
s−1
α (x)uα(x, t)ϕ(x, t)dtdx

= 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

∫ t

s−1
α (x)

(t− τ)−αuα,t(x, τ)dτϕ(x, t)dtdx

= 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

d

dt

[∫ t

s−1
α (x)

(t− τ)−αuα(x, τ)dτ
]
ϕ(x, t)dtdx.

If we integrate by parts and next apply the Fubini theorem we get that

− 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

∫ t

s−1
α (x)

(t− τ)−αuα(x, τ)dτϕt(x, t)dtdx

= − 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

∫ t∗

τ
(t− τ)−αϕt(x, t)dtuα(x, τ)dτdx. (5.102)

We note that
1

Γ(1− α)

∫ t∗

τ
(t− τ)−αϕt(x, t)dt

= 1
Γ(1− α)

∫ t∗

τ
(t− τ)−α[ϕt(x, t)− ϕt(x, τ)]dt+ ϕt(x, τ)(t∗ − τ)1−α

Γ(2− α)

= 1
Γ(1− α)

∫ t∗

τ
(t− τ)−α

∫ t

τ
ϕtt(x, s)dsdt+ ϕt(x, τ)(t∗ − τ)1−α

Γ(2− α) −→α↗1
ϕt(x, τ),

because limα↗1
1

Γ(1−α) = 0 and∣∣∣∣∣
∫ t∗

τ
(t− τ)−α

∫ t

τ
ϕtt(x, s)dsdt

∣∣∣∣∣ ≤ sup
(x,t)∈Qt∗,t∗

|ϕtt(x, t)|
∫ t∗

τ
(t− τ)1−αdτ.

We may write the expression (5.102) in the following way

−
∫ ∞

0

∫ t∗

0
χ[0,sα(t∗)](x)χ[s−1

α (x),t∗](τ) 1
Γ(1− α)

∫ t∗

τ
(t− τ)−αϕ̄t(x, t)dtūα(x, τ)dτdx,

where ϕ̄ and ūα denote the extensions of ϕ and uα by zero on [0,∞)× [0, t∗]. We recall
that by (5.93) we have

uα(x, t) ≤ c2
1e
c21 for any t > 0 and x ∈ [0, c1t

α
2 ].
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Furthermore, for α close enough to one, we get∣∣∣∣∣ 1
Γ(1− α)

∫ t∗

τ
(t− τ)−αϕt(x, t)dt

∣∣∣∣∣ ≤ 2 |ϕt(x, τ)| for any (x, t) ∈ Qt∗,t∗ .

Hence, we arrive at the following estimate∣∣∣∣∣χ[0,sα(t∗)](x)χ[s−1
α (x),t∗](τ) 1

Γ(1− α)

∫ t∗

τ
(t− τ)−αϕ̄t(x, t)dtūα(x, τ)

∣∣∣∣∣ ≤ 2 |ϕt(x, τ)| c2
1e
c21 .

Recalling that ũα ⇒ u1 on Qt∗,t∗ we may apply LDCT to obtain that

lim
α↗1

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

Dα
s−1
α (x)uα(x, t)ϕ(x, t)dtdx = −

∫ s1(t∗)

0

∫ t∗

s−1
1 (x)

ϕt(x, τ)u1(x, τ)dτdx.

(5.103)
We apply the Fubini theorem and then integration by parts formula, together with the
fact that uα,x(sα(t), t) = uα(sα(t), t) = 0 to get∫ sα(t∗)

0

∫ t∗

s−1
α (x)

uα,xx(x, t)ϕ(x, t)dtdx =
∫ t∗

0

∫ sα(t)

0
uα,xx(x, t)ϕ(x, t)dxdt

= −
∫ t∗

0

∫ sα(t)

0
uα,x(x, t)ϕx(x, t)dxdt =

∫ t∗

0

∫ sα(t)

0
uα(x, t)ϕxx(x, t)dxdt.

Hence, applying again LDCT we obtain that

lim
α↗1

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

uα,xx(x, t)ϕ(x, t)dtdx =
∫ s1(t∗)

0

∫ t∗

s−1
1 (x)

u1(x, t)ϕxx(x, t)dtdx. (5.104)

Finally, after integrating by parts we obtain

− 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

(t− s−1
α (x))−αϕ(x, t)dtdx

= 1
Γ(2− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

(t− s−1
α (x))1−αϕt(x, t)dtdx.

We note that for every (x, t) ∈ Qsα,t∗ there holds

(t− s−1
α (x))1−α → 1.

Hence, applying again LDCT we obtain that

− 1
Γ(1− α)

∫ sα(t∗)

0

∫ t∗

s−1
α (x)

(t− s−1
α (x))−αϕ(x, t)dtdx

−→
α↗1

∫ s1(t∗)

0

∫ t∗

s−1
1 (x)

ϕt(x, t)dtdx =
∫ s1(t∗)

0
ϕ(x, t∗)− ϕ(x, s−1

1 (x))dx = 0,

where the last equality holds, because ϕ vanishes on a neighborhood of the boundary
Qt∗,t∗ . Therefore, taking into account the last equality together with (5.103) and (5.104)
and regularity of u1 we obtain that (5.100) converges to (5.81) in the distributional sense,
which finishes the proof of the theorem.
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