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Streszczenie

Glownym celem pracy jest teoretyczna analiza pewnego modelu dyfuzji, ktéra jest
nielokalna w przestrzeni. W tym celu zaprezentujemy teori¢ pétgrup analitycznych dla
operatora danego w postaci dywergencji z pochodnej Caputo. Nastepnie, wykorzystamy
te rezultaty do rozwiazania jednofazowego, jednowymiarowego utamkowego w przestrzeni
zagadnienia Stefana. Znajdziemy rowniez specjalne rozwigzanie tego problemu metoda
rozwigzan samopodobnych. Ostatnia cze$¢ pracy jest po$wiecona utamkowemu w czasie
jednofazowemu, jednowymiarowemu zagadnieniu Stefana. Wyprowadzimy model, za-
ktadajac, ze strumien dyfuzji dany jest w postaci utamkowej wzgledem czasu pochodnej
Riemanna-Liouville z gradientu gestos$ci transportowanej substancji. Znajdziemy tez

specjalne rozwigzanie tego problemu.

Stowa kluczowe: teoria potgrup analitycznych, utamkowe zagadnienia Stefana,

rozwigzania samopodobne






Abstract

This work mainly concentrates on providing the mathematical background for a specific
model of fractional in space diffusion. We will develop the theory of analytic semigroups
for an operator given by divergence of fractional Caputo derivative. Subsequently, we
will apply these results to obtain a solution to one-phase, one-dimensional fractional in
space Stefan problem. We will also find a special solution to this problem by similarity
variable method. The final part of thesis is devoted to fractional in time one-phase,
one-dimensional Stefan model. We derive a model assuming that the diffusive flux is given
by the time-fractional Riemann-Liouville derivative of gradient of transported substance.

Then, we will obtain a special solution to this problem.

Key words: analytic semigroup theory, fractional Stefan problems, self-similar solutions
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CHAPTER 1. MOTIVATION

Chapter 1

Motivation

In this work we study problems exhibiting non-local in space or non-local in time effects.
The non-Fickian diffusion has been already observed in complex, heterogeneous media. An
overview of recently derived models may be found in [5]. A model phenomenon considered
in [5] is a mass transport in fractured porous aquifer. In such complex domain we expect
different behaviour of fluid in fractures and different in pores. Hence, we may regard each
of phases (fluid in porous blocks and fluid in network of fractures) as a continuum that
occupies the entire domain. Moreover, we take into account the mass exchange between
this two continua. This idea, called double-continua approach, was proposed in [3] and it
leads to a model that has a non-local character. We refer to [5l, chapter 1.2.3] for a detailed
derivation of this model. Let us discuss the case when the length scales of heterogeneity
of medium are assumed to be power-low distributed. Such situation is quite extensively
discussed in recent literature. We refer to [0, chapter 1.2.5] and references therein, for the
case of fractured porous medium. The main idea of modelling diffusion processes in such
media is to assume that the diffusive flux is proportional to the fractional derivative of
transported quantity.

In this work, we mainly focus on an anomalous super-diffusion model, where the diffusive
flux is given by the fractional Caputo derivative with respect to space variable. Such
an idea was introduced by V. Voller in [31], where the author considered the model of
infiltration of water into heterogeneous soils. Subsequently, the author transferred the idea
of representing the diffusive operator as a divergence of Caputo derivative, to the one-phase
Stefan problem (see [32]). One of the goals of this paper is to investigate the mathematical
properties of this operator from the operator theory perspective. The results concerning
this issue are presented in Chapter 3. In this chapter we solve the super-diffusion problem
with various kinds of boundary conditions by means of an analytic semigroup theory.
We note that most of the results of the first section of Chapter 3 come from [27]. We
emphasise that we develop the theory of analytic semigroups in L? - framework. In the
final section of this chapter we present the approach to solve the super-diffusion problem
in the case where data do not belong to L?. This method provides us weak solutions by

means of energy estimates.
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In Chapter 4 we present an application of the results of previous chapter. We solve the
one-phase, one-dimensional, space-fractional Stefan model introduced in [32]. In the proof
we apply the theory of evolution operators based on the results obtained in the first section
of Chapter 3. Subsequently, we increase the regularity of obtained solution in the interior
of the domain. In the second section of Chapter 4, we derive space-fractional versions of
maximum principles and Hopf lemma. Finally, we apply the Schauder fixed point theorem,
to obtain the solution to Stefan problem. We note that the results of Chapter 4, described
above, come from [28]. We finish this chapter with an example of an exact solution to
space-fractional Stefan problem by means of similarity variable method.

In the final part of the thesis we concentrate on anomalous sub-diffusion model with
temporal non-locality. Here, we are motivated by [33], where the authors represent
the non-locality in time, assuming that the diffusive flux is given in the form of the
time-fractional Riemann-Liouville derivative of temperature gradient. In a final part of
introductory Chapter 2, we present a careful derivation of one-phase, one-dimensional
Stefan problem based on such assumption on the flux. The existence of special, self-similar
solution to this problem will be proven in Chapter 5. Furthermore, we will show a uniform
convergence of self-similar solutions to the time-fractional Stefan problem to a self-similar
solution to the classical Stefan problem as a fractional parameter o tends to one. The

results concerning sub-diffusion effects come from [14].
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Chapter 2

Introduction

The introductory chapter is divided into the two parts. The first section summarizes
without proofs the relevant material from mathematical analysis, the theory of operators
as well as the theory of semigroups and evolution operators. In the subsequent sections we
turn our attention to fractional calculus. The sections second and third are devoted to the
preliminary results concerning fractional operators, considered in this work. We introduce
their notions and we give a brief exposition of their properties. We finish this chapter with

derivation of two fractional Stefan models which will be considered in subsequent chapters.

2.1. Preliminaries

2.1.1. Function spaces

The absolutely continuous functions play an essential role in the theory of fractional

calculus. Here, we recall their definition and characterization.

Definition 2.1. [10, Definition 3.1] If P C R, then we say that f : P — R is absolutely
continuous on P (f € AC(P)) if and only if for every € > 0 there exists 6 > 0 such that

kf: F(be) — fla)] < e

for every finite number of non overlapping intervals (ay,by), k € 1,...,n with [ax,b;] C P
and

Z ’bk — ak\ <.

k=1

We write f € AC,.(P), if f € AC([a,b]) for every [a,b] C P.

Theorem 2.1. [10, Theorem 3.30] Let P C R be an interval. A function f : P — R
belongs to AC,.(P) if and only if

(i) f is continuous in P,
(ii) f is differentiable a.e. in P and f' belongs to L}, .(P),
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(iii) for all x,y € P
0+ [ " Pt (2.1)

We note that from the above theorem follows that the space AC),.(R) may be identified
with W,oH(R).
Let us now introduce the definition of a fractional Sobolev space. The definition will
be given by means of complex interpolation. For an introduction to real and complex

interpolation we refer to [20].

Definition 2.2. [17, section 9.1] Let L > 0, B > 0. We choose a natural number m greater
than or equal to 3. Then, we define a fractional Sobolev space as a complex interpolation

space

H”(0,L) := [L*(0, L), H™(0,L)] s
This definition is independent of the choice of number m up to the norm equivalence.

Remark 2.1. [30, Remark 4.4.2/2] The space HP(0,L) coincides with the space of
functions belonging to L*(0, L) such that for s=p0—15]

Z/ / JIE;S( )‘ dydxr < oo.

J<|B]
The equivalent norm in HP(0, L) is given by

f(J 1)
o = (1 + 5 [ [ e Lty

Ji<|8]

We will frequently make use of the following remark from [I7]. Here we consider only

the one dimensional case.

Remark 2.2. [I7, Remark 12.8.] For L > 0,s > 0,s # % there holds

aé; € B(H*(0,L); H*"'(0, L)).

2.1.2. Fractional powers of operators

Here, we present a brief introduction to the theory of fractional powers of operators. We
limit ourselves only to the most essential results that will be used in the thesis. Although
there are a few standard approaches to this topic, here we follow the one introduced in [21].
It will provide us a uniformity of notation. For a comprehensive study of the fractional
powers of operators we refer to [2], [19], [21] [23], [30], [34].

In the whole subsection we discuss only linear operators A : D(A) C X — X where X is
a Banach space. Here and henceforth by E we denote the identity operator.
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2.1. PRELIMINARIES

Definition 2.3. [Z], Definition 1.1.1] We say that A is non-negative if (—o0,0) C p(A)
and there exists M > 0 such that

H()\E + A)_1HB(X) < ]\;[ for every A > 0.

Definition 2.4. [Z], Definition 1.1.2] If A is non-negative and additionally 0 € p(A) we
say that A is positive.

We note that if A is injective but it is not invertible, by A~! we understand the
operator with the domain D(A™!) = R(A) defined as follows: for every x € D(A™!) we
set A=ty =y, where Ay = .

Proposition 2.2. [21, Proposition 1.1.2] If A is non-negative and injective, then A~ is

also non-negative.
Let us pass to the definition of Balakrishnan operator.

Definition 2.5. [21, Definition 3.1.1] Let A be a non-negative operator. We define for
0 < Rea < 1 operator J* as follows D(J*) = D(A)

Joy = Smar / TN (A + A) L Aud).
7 Jo
Forn < Rea <n+1, we set D(J*) = D(A™) and J* = J* " A",
IfRea =1, D(J%) = D(A?) and

sin o

00 A arm
o _ a-1 A A in — Au.
J%u - /0 AT A+ A) /\2_1] ud + sin 5 Au

For Rea =n+ 1, we set D(J*) = D(An+2) and J& — JomAn.

Proposition 2.3. [21, Theorem 3.1.5 and Theorem 3.1.6] Let A be a non-negative operator.
If u e D(A™) then o — J%u is analytic in {o € C: 0 < Rea < n} with values in X. Let
A be densely defined. Then for u € D(A) we have

1. limg 1 J*u = Au, where the convergence is in a fized region contained in {a € C: 0 <
Rea < 1},

2. limg_0 J*u = u, where the convergence is in a fived region contained in {a € C: 0 <
Rea < 1}.

The definition of a positive power (i.e. Rea > 0) for non-negative and bounded

operator is given by the Balakrishnan operator.

Definition 2.6. [21, Definition 5.1.1] If A is non-negative and bounded we define A* = J*
for Rea > 0.

Definition 2.7. [2], Definition 5.1.2] Let A be an unbounded and positive operator. We
define for Rea > 0

AY = ((A_l)a)_l.
Here, the domain of A* consists of u € X such that u € R((A™1)*).

17



CHAPTER 2. INTRODUCTION

We also present the definition of A in the case where A is unbounded and not invertible.
However, we do not concentrate on this topic, because in this work we will discuss the

operators which are either bounded or invertible.

Definition 2.8. [21, Definition 5.1.3] If A is non-negative, unbounded and 0 € o(A),
for Rea > 0 and for u € X such that u € D((A + €)*) for e > 0 close to zero and
lim, o+ (A + &)%u exists in X, we define

A% = lim (A +¢)%u.

e—0t
In the next proposition we present an interpolation estimate between the norms of

fractional powers of non-negative operator.

Proposition 2.4. [3], Remark 2.9, Chapter 2.7.4] Let 0 < a < § <y < 1. We assume
that A is a mon-negative operator in the sense of Definition . Then for any u € D(A7)

we have A
b-a 1=8
4% < (M + 1) lAn) 5 anu
where the constant M comes from Definition [2.5
Proposition 2.5. [21, Theorem 3.1.8 and Corollary 5.1.12] Let Rea > 0 and A be an

non-neqgative operator. Then, J% is closable and A* = J* if and only if A is densely
defined.

Corollary 2.6. [21, Corollary 5.2.4] If A is non-negative and injective, then for Rea > 0
A% is also injective and (A™1)* = (A*)~L.
Now we introduce negative and imaginary powers.
Definition 2.9. [21, Definition 7.1.1 and Definition 7.1.2] Let A be non-negative and
injective. Then for Rea > 0 we set A= := (A%)~'. Moreover,
AT = (A+N2ATTAYT(A L N for A > 0.
If A is invertible, then in the definition of A, we may take X\ = 0.

We finish this subsection with two theorems. We note that the second one is of

fundamental importance, if we consider the domains of fractional powers of operators.

Theorem 2.7. [21, Theorem 7.1.1] Let o, B € C and let A be a non-negative and injective
operator. If u € D(A*P) N D(AP), then APu € D(A%) and A*APu = APy,

Theorem 2.8. [2], Theorem 11.6.1] Let us assume that A is densely defined, non-negative
operator on a Banach space X. If A has bounded imaginary powers, i.e. A is injective
and there exist M > 0, 0 > 0 such that

HA” B) < MM for every t € R,
then D(A®) = [X, D(A)]n for «a € (0,1) with norm equivalence.

18



2.1. PRELIMINARIES

2.1.3. Semigroup theory

The third chapter of the thesis is devoted to an analysis of the operator of space-fractional
diffusion from the perspective of semigroup theory. Here, we present a brief introduction
to this subject. Let us recall the definitions of Cj - semigroup of contractions and the

infinitesimal generator of the semigroup.

Definition 2.10. [253, Chapter 1] Let X be a Banach space. Let T(t), 0 <t < oo be a
one parameter family such that T(t) € B(X) for every t € [0,00). Then T'(t) is called a

Co - semigroup of contractions iff

1. T(0) = E,

2. T(t+s)=T(t)T(s) for every t,s € [0, 00),
3. limy o+ T(t)u = u for every u € X,
4Ty < 1

We note that if the family 7'(¢) satisfies only the first two assumptions it is called a

semigroup and if it satisfies additionally 3., then it is called a Cj - semigroup.

Definition 2.11. [25, Chapter 1] Let X be a Banach space and let T(t) be a semigroup

on X. The linear operator A defined by

D(A)={ue X : lim T()u =

! exists in X}
t—0

and -
Au: D(A) — X, Au= lim THu—u

t—0+ t

is called the infinitesimal generator of semigroup T (t).

Remark 2.3. [25, Chapter 1, Theorem 2.4] One of fundamental properties of the Cjy
- semigroups s that if T(t) is a Cy - semigroup and A denotes its generator, then if
u € D(A), then T'(t)u € D(A) and

d

%T(t)u = AT (t)u = T(t)Au.

Let us recall the definition of dissipative operator.

Definition 2.12. [2, Definition 3.4.1] A linear operator A : D(A) C X — X is called
dissipative if for every uw € D(A) there exists u* € X* such that ||u*|| <1, (u,u*) = ||ul]
and Re(Au,u*) < 0.

We present also a characterization of dissipative operator.

Remark 2.4. [2, Lemma 3.4.2, Example 3.4.3]

1. An operator A on a Banach space X is dissipative if and only if for every u € D(A)
and every t > 0 the holds ||u — tAul|| > ||u]|.

19



CHAPTER 2. INTRODUCTION

2. From the first part of the remark it follows easily that if X is a Hilbert space, A is
dissipative if and only if for every u € D(A) the holds Re(Au,u) < 0.

Let us present the Lumer-Philips theorem which provides the criterion for an operator

to be a generator of Cy-semigroup of contractions.

Theorem 2.9. [2, Theorem 3.4.5] Let X be a Banach space and A be a linear, densely

defined operator on X. Then A is a generator of Cy-semigroup of contractions if and

only if

1. A is dissipative,
2. there exists A > 0 such that R(AE — A) = X.

We introduce a definition of numerical range and a classical result from [23].

Proposition 2.10. [23, Ch.1, Theorem 3.9.] Let X be a Banach space. For a linear

operator A in X we define its numerical range S(A) as
S(A) ={(z", Az) : x € D(A),||z|| = 1,2 € X*,||lz"|| = 1, (z", z) = 1}.
Let us assume that A is closed, linear and densely defined on X. We denote by 3 := C\S(A).

If X € X, then A\E — A is injective and has closed range. Moreover, if ¥o C X is such that
Yo N p(A) #£ 0, then the spectrum of A is contained in C\ 3o and

. 1
o =71 = G st

where d(\, S(A)) denotes a distance between X and S(A).

for every X € X,

Now, we will recall the definition of an analytic semigroup. At first, we introduce the

definition of a sectorial operator given by [19].

Definition 2.13. [19, Definition 2.0.1] Let A be a linear operator on a Banach space X .
We say that A is sectorial if there exists M >0 and w € (5, 7] such that

1. p(A) DS, :={A e C: N#0, |arg)| <w},
2. |(AE = A7 < ‘—Af' for every A € S,,.
The definition of an analytic semigroup is given as follows.
Definition 2.14. [19, Definition 2.0.1] Let A: D(A) C X — X be a sectorial operator
and let w be the constant from Definition[2.15 The family T(t) defined by T(0) = E and
1
T(t) = — / ANE — A) YN for t> 0,
21t Jr,.,
where r > 0,n € (§,w) and
Lop={AeC:lagA|=n, N >r}U{reC:largA| <n, |A|=r}

is the curve oriented counterclockwise, is called an analytic semigroup generated by A.

20



2.1. PRELIMINARIES

If a sectorial operator A is densely defined then an analytic semigroup generated by A
is in particular a Cy semigroup.

In fact, the semigroup generated by a densely defined sectorial operator has better
regularity properties then a Cj - semigroup, i.e. it increases the regularity of initial
condition. We present here selected properties of analytic semigroups. The following
results comes from [34, Theorem 3.4 Chapter 3.2.1] and [19, Proposition 2.1.1].

Theorem 2.11. Let A be a sectorial operator on a Banach space X and ug € X. Then,

there exists exactly one solution to

L) = AU, U(0) = u

belonging to C([0,T]; X) N C((0,T]; D(A)) N C*((0,T]; X). The solution is given by
U(t) = T(t)up, where T(t) denotes an analytic semigroup generated by A. Furthermore,
there exists a positive constant ¢ = c(T), which is an increasing function of T, such that

the following estimate holds for every t € (0,T]

U@ x + U@ x + AU x < clluoll -
Nevertheless, for every u € X and every k € N there holds T'(t)u € D(A*) for t >0 and
if u € D(AF), then AT (t)u = T(t)A*u for every t > 0. Besides, T(t)u € C*((0,00); X)

and
dk

dtk
One may also consider a nonhomogeneous problem. Here we present a simplified

T(t) = AFT(1).

version of [34, Theorem 3.4 Chapter 3.2.1]. We note that in our formulation, the regularity

of the source term is not optimal. For optimal regularity results we refer to [34] and [19].

Theorem 2.12. Let A be a sectorial operator on a Banach space X, ug € X and

F e C%([0,T); X) for v e (0,1). Then, there exists exactly one solution to
th(t) = AU(t)+ F(t), U(0) =ug (2.2)
in C([0,T); X)NC((0,T]; D(A))NCY (0, T); X) which is given by the variation of constant
formula

U(t) = T(0pw + [ T = 1) F()dr,

where T'(t) denotes an analytic semigroup generated by A.

We will also make use of the version of the estimate in complex interpolation spaces.
We present here, scaled version of [19, Proposition 2.2.9.]. We note that the original result

from [19] is more general.

Proposition 2.13. [19, Proposition 2.2.9.] (scaled version) Let T(t) be an analytic
semigroup generated by sectorial operator A. Then, for everyt € (0,T),n € N, o, 5 € [0, 1]
there holds

[A™T (t)ullx pay, < et lull x,pay., -

21



CHAPTER 2. INTRODUCTION

where ¢ is a positive constant dependent on o, 5,n and T. Moreover, ¢ is an increasing
function of T.

We finish this subsection with a useful result concerning the perturbation of the

generator of an analytic semigroup.

Proposition 2.14. [19, Proposition 2.4.1] Let X be a Banach space and A : D(A) C
X — X be sectorial. Let us consider B € B(Y,X), where Y is a Banach space such that
D(A) CY C X. We equip D(A) with the graph norm, i.e. |lull p 4y = ullx + [|Aullx. If
there ezists a € (0,1) and ¢ > 0 such that

lully < e llullf llulx™® for every u € D(A).
Then, A+ B : D(A) — X s sectorial.

2.1.4. Evolution operators

Now we will present a brief introduction to the theory of non-autonomous equations.
By means of this theory we solve the space-fractional Stefan problem in Chapter 4. Let as

begin with the definition of evolution operator.

Definition 2.15. [19, Definition 6.0.1] Let X be a Banach space, T > 0. A family of
linear bounded operators {G(t,o) : 0 < o <t < T} is said to be an evolution operator for
the problem

u'(t) = Alt)u+ f(t), 0<t<T, u(0) = um,
where A(-) denotes a family of sectorial operators with common domains, i.e. D(A(t)) = D

for every t € [0, T}, if

1. G(t,0)G(o,r) =G(t,r), Glo,0)=E, for 0<r<oc<t<T,
2. G(t,o) € B(X,D) for 0 <o <t<T,
3. t— G(t,0) is differentiable in (o,T) with values in B(X) and

;G’(t,a) = A(t)G(t,o) for 0 <o <t <T.

Theorem 2.15. [19, Chapter 6] Let D be a Banach space continuously embedded into X
and let T >0, a € (0,1). If for 0 <t <T A(t) : D(A(t)) — X satisfies

1. for every t € [0,T] A(t) is sectorial and D(A(t)) = D,
2.t A(t) € C*([0,T); B(D, X)),

then there exists a family of evolution operators for A(t) given by Definition .

If the initial data are more regular, we expect higher-regularity results up to the initial

time.
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Proposition 2.16. [19, Corollary 6.1.6.(i), (iii)] Let A(t) satisfies the assumptions of
Theorem [2.13. If ug € X, then G(t,0)uy € C([0,7];X) N C*(0,7]; X) N C((0,T]; D).
Furthermore, if ug € D, then G(t,0)uq € C*([0,T]; X) N C([0,T]; D) and

;G(t, 0)ug = A(t)G(t,0)ug for every 0 <t < T.

In order to develop the theory of non-homogenous problems we introduce the notion of

a mild solution.

Definition 2.16. Let us discuss the problem

u'(t) = Alt)u(t) + f(t), o <t <T, ulo)=u,, (2.3)
where A(t) satisfies the assumptions of Theorem[2.15 We denote by {G(t,7):0 <71 <
t < TY} the family of evolution operators generated by A(t). For every f € L'(o,T; X),

U, € X function u defined by the formula
t

ult) = Gt,a)u, + [ G(t.7)f(7)dr (2.4)
1s called a mild solution to .

The next proposition establishes when the solution to ({2.3)) is given by ([2.4)).

Proposition 2.17. [19, Corollary 6.2.4.] Let f € C((0,T); X) N L' (0, T; X), u, € D. If
problem has a solution belonging to C*((0,T]; X) N C((0,T); D) N C([0,T]; X) so
that is satisfied for each t € (0,T], then u is given by .

We finish this section with a proposition that collects the estimates which are used in

the proof of Theorem [4.1]

Proposition 2.18. [19, Corollary 6.1.8] Let {G(t,0) : 0 < 0 <t < T} be a family of
evolution operators generated by A(t) : D — X. Then for every 0,6 € (0,1), G satisfies
the following estimates. If g € [X, D]s, then for any 0 < o <t < T there exists positive

constant ¢ = ¢(0,0,T) which is a continuous increasing function of T such that

Gl < G =5 19w (2.5)
Moreover, for any 0 <6 < 0 < 1, we have
16l 1, < =75 190 (2.6)
and for § € (0,1), § € (0,1]
IA@CHE )9l 1y < gy 190l (27)
Finally, for every0 <o <r<t<T
140161019 - A gl < e (05 + s = s Wl
(2.8)

where a € (0,1) comes from Theorem [2.15
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2.2. Fractional integrals and derivatives and their connection

with fractional powers of operators

According to [29], the origins of fractional derivatives are dated to XVII century and
the origins of calculus itself. Nevertheless, this subject became extensively studied just in
the last decades. In this section we introduce the definitions of fractional operators and
we briefly establish their connection with fractional powers of operators of integration and

differentiation.

Definition 2.17. Let L > 0, « € C, Rea > 0. For f € L'(0,L) we introduce the

fractional integral I* by the formula

@) = g ) @ =0 ) (2.9)

Here I'(+) denotes the Gamma function which is given by the formula
['(z) :/ e 't
0

Here and in the whole thesis by * we denote the convolution on (0, c0), i.e.

(9@ = [ fw)g

We note that the fractional 1ntegral is given by convolution on positive real line with
integrable kernel, i. e. I*f = % * f. Hence, by the Young inequality for convolution it
is well defined for integrable functlons and I* € B(LP(0, L), L*(0, L)) for every p € [1, 00].
Directly from the formula we may notice that (I'f)(z) = [ f(p)dp. To show that I"f is
equal to n— fold integral it is enough to apply the integration by parts formula.

Using the phrase ’fractional integral’, it seems natural to ask, whether the operator defined
by may be interpreted as a fractional power of the operator of integration. We will
give an affirmative answer to this question, in the case of L? space for p € [1,00]. It is
also worth to mention the paper [9], were the case of L? - space was considered. Let us

define the operator of integration on L?(0, L) by

(UN)@) = [ f@)dp for f e (0, L), pe [1,od] (2.10)
We will show that the operator I is non-negative in the sense of Definition [2.3] The
non-negativity of I in LP(0, L) for p € [1, oo] follows from the two propositions presented

below.
Proposition 2.19. [19] Let L > 0 and A € C, X #0. Ifu,v € L'(0, L), then
t s—t
(AE+Dv(t) = u(t) < v(t) = A\ ut) — )\_2/ u(s)e x ds. (2.11)
0

Proof. Let us assume that v(t) = A" u(t) = A2 [{ u(s)e’> ds. Applying the Fubini theorem

we arrive at
t s—T
(/\E+I)v(t):u(t)—)\_1/u( e ds+ A\~ / s)ds — A~ // s)e x dsdr
0
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t
-\t / u(s
0

— t t s
—1)ds — )\_2/ / e x dru(s)ds = u(t).
0 Js

To obtain the reverse implication we convolve both sides of (AE + I)v(t) = u(t) with e *

t t s—t
)\/ v(s)e’ s d8+/ / s)dse’s dr —/ u(s)e > ds.
0 0

If we apply the Fubini theorem, then the above equality reduces to

)\/ ds-/ (s)e%ds.

Taking the derivative of both sides we arrive at the desired equality. O]

and we get

Proposition 2.20. [12/ If L >0, p € [1,00|, A # 0, then I + A\E : LP(0, L) — L*(0, L)
is an isomorphism and there holds the following estimate

1B + D) lawrony < L+ V2N for AeX, (2.12)
where

Y={ze€C: Rez>|Imz|}.
Proof. Clearly, \E' 4+ I € B(L?(0, L)), i.e. it is linear and bounded. We will show that the
equivalence (2.11)) defines a bounded inverse.
t s—t
||()\E + ])_IUJHLp(o,L) = ||)\_1u(t) — )\_2/0 U(S)GTdSHLp(o,L)
< I\ ullzeo,) + A2 ullzeo,n lle™ 10,0y
where we applied the Young inequality for convolution. Calculating the last norm we get
Re )
08 + 1o < W |14 g2 (1= 5)] fulsa,

Applying the estimate

A ()
N2 <
Ro X <V2 for Nex,

we obtain ([2.12]). O

Propositions [2.19| and [2.20] show that I is non-negative operator in the sense of
Definition [2.3] From Definition we infer that positive powers of I are defined by

Balakrishnan operator J¢ given by Definition Let us discuss here the case 0 < Rea < 1.

Then, .
sin ar

Jou = /Oo AYAE + D)~ ud).

7 0

By Proposition [2.19 we note that

(\E + 1) Tu(t) —A/ F)dr — A~ // dTeAds—)\/ r)e s dr.

Hence,

1 [e%s) t ,_
Joy = 22T / Ao / u(r)e S drdA.
T Jo 0
Applying the Fubini theorem and then the substitution t_TT = p we arrive at
1 t
J% = st am / )t — 1) 1/ p e Pdpdr = el / u(T)(t — 7)*tdrD (1 — a).
T Jo
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Recalling that
sino 1
r  I'(l-a)l(a)’

(2.13)

we obtain

Ju—Fm%LMﬂﬁ—ﬂ dr.

Proceeding similarly in the general case Rea > 0 we arrive at the following proposition.

Proposition 2.21. Let Rea, L > 0, p € [1,00|. Then the operator I* defined in as

an operator acting on LP(0, L) coincides with the fractional power of integration operator

defined by .

As a matter of fact, this result is regarded as a powerful tool in the theory of fractional
integrals. For instance, we may easily obtain the semigroup property I%I? = I°t8. Tt may

be shown that this formula is satisfied even if we consider only integrable functions.

Proposition 2.22. Let Rea,Re3,L >0, f € L'(0,L). Then, there holds

1P f =[P .

The proof follows from the Fubini theorem and the following integral relation

b ')’
/ (x—a)* ' (b—2)tdx = M(b—a)aw_l for Rea,Ref >0, —o00 <a <b< 0.

C(a+p)
(2.14)
Now we will introduce the definitions of the Riemann-Liouville and Caputo fractional
derivatives. Although, the fractional differential operators of arbitrary order @« € C,
with Rea > 0 may be defined, in this work we focus our attention only on the case

0< Rea < 1.

Definition 2.18. Let 0 < Rea < 1. If f is reqular enough ( the discussion about
appropriate reqularity of f will be carried below) we may define the Riemann-

-Liouville fractional derivative

0 (a) = 5o = s e [ @ =0 " @y

and the Caputo fractional derivative

DF () = (I () ~ FO))) = )

s = ayas , (P @)~ FO)dp

It is clear that for functions belonging to W1(0, L) the foregoing fractional differential
operators are well defined. Moreover, if f belongs to W!(0, L), then D®f may be

equivalently written in the form

D" f(w) = ' F) = e [ (@ =0 ) (2.15)

I'l -«
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The proper definition of the domain of these operators seems to be challenging itself.
Here, we will present a characterization of the domain of the Riemann-Liouville fractional

derivative in LP - spaces. Let us define the operator of differentiation

8. 9 . 1,p D 9 R
a—x.D(%) = W0, L) — LP(0, L), Gyt i=u for p € [1,00]. (2.16)

Here, the space (WP denotes the subspace of W' consisted of functions with vanishing

trace at zero. We will establish the following proposition.

Proposition 2.23. Let L > 0, p € [1,00], 0 < Rea < 1. Then, the Riemann-Liouville
fractional derivative 0%, defined by Definition as an operator acting on LP(0, L)
coincides with the fractional power of differentiation operator defined by .

Proof. At first, we will show that % is a positive operator in the sense of Definition
on LP(0, L) for p € [1,00]. To show nonnegativity of 2 we fix v € LP(0, L) and we search
for a solution to

/\u—i-ﬁu:v, Re X > 0,

Ox
belonging to D(a%). We multiply the equation by e**.
0
%(ue’\x) = ve.
Since u(0) = 0, we get
u = / e APy (p)dp (2.17)
0
and by the Young inequality for convolution
loll,
Az ?(0,L)
el oo,y < Wl ooz € pon) = Rey  for ReA>0.
Obviously, zero belongs to the resolvent set of % and ((%)_1 = I, where [ is an integration
operator defined in ([2.10f). Hence, a% is a positive operator in the sense of Definition
The fractional powers of a% are defined due to Definition in the following way
0
D((%)a) ={ueLP0,L):ue R(I)}
and
0 0

B Y S 1oy —1
() = () ),
Making use of (%)_1 = [ and applying Definition , we arrive at
a (e
Z) =1
(o)
On the other hand, if u € D(I~®), then u € D(I'™®) = LP(0,L). By Theorem
(applied with parameters —1,1 — a) we obtain that I'=u € D(I™1) and [~y = I~ ['7u.

Furthermore, 5
I 7y = =17 = 0%,
Ox
Summing up the results, we obtain that
a o 1o 6 o\ —a\ «
(%) u= 0% forevery u € D((£) ) =D %) = R(I). (2.18)
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]

Our aim is to characterize the domain of 0 which coincides with the range of I* in
LP(0, L) for a € (0,1) and p € (1,00). In order to do it, we recall the result concerning

the boundedness of imaginary powers of 8%.

Theorem 2.24. [2], Theorem 12.1.9] Let - be defined by and p € (1,00). Then,
& ”‘

G| <et+lrhe™ for 7#0,

LP(0,L)
where the imaginary powers are defined by Definition[2.9 and c is a positive constant which

depends only on p.

We are ready to formulate and prove the results concerning the characterization of the

domain of the Riemann-Liouville derivative in LP(0, L).

Proposition 2.25. For L > 0,a € (0,1),p € (1,00) the operators 1* : LP(0,L) —
oH*?(0,L) and 0% : oH*?(0, L) — LP(0, L) are isomorphism and the following inequali-
ties hold

¢ Hullorero,Ly < N10%ullro,r) < cllullygarory forue H*?(0, L),

I fllomrorony < I fllzeco,ny < llI® fllgmano,ny for f € LP(0, L).
Here by ¢ H*?(0, L) we denote the fractional Lebesque space defined by
oH*P(0, L) := [LP(0, L), W'?(0, L)].,

and ¢ denotes a positive constant dependent on a, p, L.

Proof. Applying Theorem together with Theorem [2.§] we obtain that the domain of
()« in LP(0, L) is given by ¢H*?(0, L). Hence, by Proposition we obtain that if we
consider 0% as an operator acting on LP(0, L) we have D(0%) = (H*?(0, L) with norm
equivalence. Hence, ||0auHLp(O’L) <ec HuHOHQ,p(O,L) for u € H*?(0, L) and H[af||0Ha,p(07L) <

|l flgr(o,z) for f € LP(0, L). The two remaining inequalities follows from Corollary O

In this thesis we will work mainly in Hilbert spaces, hence the case of p = 2 in Proposi-
tion [2.25] is on particular interest. We will discuss this case in detail in Proposition [2.32

We finish this section with a remark concerning the Caputo derivative.

Remark 2.5. Let L >0 and 0 < o < 1. Let us discuss the operator 3% defined in .
Then, the Balakrishnan operator J of % coincides with the Caputo derivative D defined
in definition . Furthermore, the operator 0% defined on ¢ H*?(0, L) for p € (1,00) is
the closure of D defined on (W'2(0, L).

28



2.3. PROPERTIES OF FRACTIONAL OPERATORS

Proof. Let us calculate the Balakrishnan operator of a%' For u € D(a%) we have

Joy = SOT / et / "Dy (p)dpd = 20T / " (p) / At ey,
0 s 0 0

T 0
Applying substitution A(z — p) = w and then the identities (2.13)) and (2.15) we get
1 T
Joz — / _ —o, /! d — Doz
ST Za) o (z —p)~"u'(p)dp u,

hence, we obtained the first part of the statement. In view of Proposition [2.25] the second

part of statement follows directly from Proposition [2.5] O]

2.3. Properties of fractional operators

Now, we will present more elementary properties of fractional operators, that will
be used further. For a comprehensive studies on this subject we refer to standard
literature [11], [29].

Remark 2.6. Directly from the definition we may note that the Riemann-Liouville and
Caputo derivatives coincide for functions which vanish at zero. Moreover, for every

absolutely continuous f there holds
(D°f)(@) = (@"1)) = = /O

Let us investigate how the fractional operators act on polynomial functions. This is a

—Q

very simple but useful example.

Example 2.1. Let a € (0,1), § > —1. Then,
Iocxﬁ _ F(ﬁ + 1) Iﬂ+a

MNa+B+1)

F(ﬁ-i—l) _
0%z D%x F(ﬂ+1—a)x )

In the forthcoming chapters we will notice that the behaviour of fractional operators

and for f >0

acting on constant functions plays essential role in the theory of regularity of solutions to

fractional-differential equations. We formulate this observation in the next example.

Example 2.2. Let o > 0. Then

(I°1)(2) = r((jﬂ) and for a € (0,1) (8°1)(x) = F(f—oz) (D*1)(x) = 0.
We note that the Riemann-Liouville fractional derivative, unlike the Caputo derivative,

does not vanish on constant functions. This rather unnatural behaviour of 9% is one of

the reasons way the Caputo derivative is preferably used in many physical models.

As it was already mentioned, 0“ is well defined for absolutely continuous functions.

Proposition [2.25] gives us the characterization of the domain of 9 in LP. However, there

exist less regular functions such that their convolution with the kernel 7 is absolutely

continuous. For such functions 0% is well defined as well. Let us provide an example.
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Example 2.3. Let a € (0,1). Applying we obtain that

1 o [ 1 0

— —p) *p* dp=—TI(a) =0.
['(1 —«)dx /o (x=p)p"dp Ox (@)

a—1

is not absolutely continuous on [0,1]. Furthermore,

1 [LP(0,1), WP(0,1)]a

8041,&—1 —

Obuviously the function x

for any p € (1,00). Indeed, we fix p € (1,00) and we consider the operator I* defined
on LP(0,1). In view of Proposition it is enough to show that x*~' ¢ R(I%*). Let
us suppose that there exists w € LP(0,1) such that [*w = z*~ . Then, 0“I“w = w and
0%t = 0. Hence w = 0, which leads to a contradiction with I®w = x* ' because
170 = 0.

We note that, since =1 is not well defined at the origin, the Caputo fractional derivative

for this function is not well defined.

Considering the fractional derivatives we can not expect the usual formula for differen-

tiation of the product. However, we have the following result.

Proposition 2.26. Let L > 0, a € (0,1). If f,g € AC[0,L] and g € C*?(]0, L)) for
B € (a,1), then

O (F - 9)(w) = 9@ 1)) + gy [ =2 (00) — 90) F(p)ip

Nl -«

Proof. Let us perform the calculations

O D)) = g (2= 0 SOy

1 0

! g() /Ox(w —p)‘“f(p)dp} “Ti—a)or /Ox(w —p) " f(p)(g(x) — g(p))dp.

o
I'(l —a«)ox

Since |g(x) — g(p)| < ||g||00,5(07L) |z —p|5 we may differentiate the last integral and we

obtain

(- 0)(@) = @ e | (@ =9 )+ 9()o" @

I'l -«

« 1

Ti—a) /Om(x =) () (g(x) = 9(p))dp — IO /Ox(:c —p) " f(p)dp

= 9091 ) + F gy [, =P T @)0() — 90

I(1—a)Jo
[l

We introduce the definition of Mittag-LefHler functions. These functions play an

important role in the theory of fractional calculus.

Definition 2.19. Let u,v € R, v > 0, then we define

[e.9] n

Bunle) = X 5o

_— d E,(z)=FE, :
R A
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Mittag-Leffler functions for positive v and p are entire functions with respect to z.
We may consider these functions as the generalizations of exponential functions, since
E11(z) = e*. The function E,(At*) plays a significant role while considering fractional

differential equations because it satisfies
DYEL (M%) = AE,(AtY).
This identity may be easily proven applying term by term differentiation.
We present here, quite sophisticated result obtained in [24] which we will apply in the

next chapter.
Proposition 2.27. [2, Theorem 4.2.1] Let E,, ,(-) denotes the Mittag-Leffler function.
If we suppose that either
O<v<l pel[l,1+v] or ve(l,2), pev—-1,1U]y,2],
then all roots of the function E, , lie outside the angle

TV
< —.
arg 2| < 7

One of the fundamental issues, for solving the fractional differential equations with the
Caputo derivative, is to investigate whether the operator I acts like an operator inverse
to D*. We cite here Lemma 2.21 from [I1], however instead of the L> assumption we

assume LP regularity.

Proposition 2.28. [I1, Lemma 2.21] Let L > 0, « € (0,1). Then, we have
(DI f)w) = (&) for [€LN0.L), p> .,
(I°Df)(x) = f(x) = f(0) for [fe ACIO,L].

Proof. We note that if f € L?(0, L) for p > é, then we may apply Holder inequality with

parameters p, ]% to obtain

p—1
1 x _ 1 1 p—1\7 pa-1 .,
o0 = | [ o= 100 < 1 (e =
Hence, applying Remark [2.6] Definition 2.18 and Proposition [2.22 we arrive at
0 3}
DYICf=0f = —I'"I"f=—If=f.
Ox ox

To show the second identity we take f € AC[0, L] and we apply formula (2.15)) together
with Proposition to obtain

(I1*D*f)(w) = I1*I'="f'(z) = I f'(z) = f(x) — f(0).
0

Now, we present an analogous result in the case of the fractional Riemann-Liouville

derivative.
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Proposition 2.29. [29, Theorem 2.4] Let o € (0,1) and L > 0. Then,
oI*f = f for fe LY0,L).
If f € LY(0, L) is such that 9*f € L'(0, L), then we have

1°9° f(z) = f(z) — a_lll‘“f(o),

[(a)

where

I'=£(0) := lim I'~f(z).

z—0
We note that the limit is well defined because by the assumption I'~%f is absolutely
. . . .. 1
continuous. In particular, if f additionally belongs to LP(0, L) for p > ;= then,

1°0°f = f.
Proof. 1f f is integrable then by Proposition [2.22| we have
oI f = 0 I'eref = 2If = f.
Ox

o
Under the assumption 0*f € L'(0, L) we may write
0
Iaaozf — Iaaill_af — Dl_all_af — al—a(jl—af . ]l_af(O)),
T

where we used identity (2.15) and Definition [2.18] Applying the first part of the claim
and Example 2.2 we arrive at
x
10" f(2) = f(x) — I f(0) .
@) = 1) = 1 FO

If additionally f € L*(0, L) for p > ﬁ we obtain by Holder inequality (as in the proof of
Proposition [2.28)) that 7'~ f(0) = 0 and the proof is finished. O

a—1

We illustrate how does the Proposition [2.29] work on an example.

Example 2.4. Let us discuss the function x*~'. Then, according to Proposition
a—1

we obtain that 0°I°x*~' = x*71. However, [°0°z*™! = 0 = 2*7! — L—<T'(«), where

T(a)
(@) = (I'*21)(0).

Below we present a simple proposition which gives us the formula for the superposition
of 0% and D%.

Proposition 2.30. [14, Proposition 6.5] Let L > 0. For «, 3 € (0,1) such that « + 5 < 1
and f € AC0, L] we have 0° D f = D**P f.

Proof. Indeed, by Definition and formula (2.15)) we have

0 0 0 0
85Da — 7[17B‘[170¢7 — 7]27(64»0:)7
/ ox axf Ox Ox /
where in the last identity we applied Proposition 2.22] Further, we get
aﬁDaf — 2[]1—(ﬁ+a)£f — ]1—(6+a)2f — D‘H’Bf.
Ox Ox Ox
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Remark 2.7. Although the relation 0°0° = 0°%P is not true in general for absolutely
continuous functions, we may show that for absolutely continuous [ and o € (0,1) there

holds
0

0“0 T f = —f.
f 8.75f
Indeed, we apply firstly Remark[2.6] and then we use Example to get
a—1 a
09 = D" JO) =rDiep = 2

x
Il —a)
Analogously to the fractional operators defined in Definition and Definition [2.18

we may consider right-side operators.
Definition 2.20. Let L > 0. For Rea > 0 and f € L'(0,L) we define

@) = e [ 0= 0

Analogously, for f reqular enough and 0 < Rea < 1 we may define

O (2) = — (1)) and D f(x) = =1 (x)  f(L)]

All the properties discussed above may be easily transferred for the case of I, 9% and D*.
We present here, the proposition from [I5] which provides the energy estimate for the
Riemann-Liouville fractional derivative. This estimate appears to be essential in further

considerations.

Proposition 2.31. [15, Proposition 6.10] If w € AC|[0, L], then for any o € (0,1) the
following equality holds

/ 0w (x)dx = 4/ /L [wiz p|uljJ(ra>’ dpdx
+2ml_a) [ —a +x-a1 () d.

Hence, there exists a positive constant ¢ which depends only on «, L, such that

/ 8w (2)dr > cllwl%s o, (2.19)
and in particular
[ oruta) wiwde > i [ ()P
2T (1 —a) Jo
Proof. Let us perform the calculations. By Remark we may write
/OL “w(x) - w(z)dr = / D%*w (x)dx + I’(tf<£))® /OL x%w(x)dx.

Next, by definition of D* we have

/ 0*w r)dr = F(l—a/ / r—p) W' (p)dp-w(x )dx—{—r(w(()))/Lx_o‘w(x)dx

11—«

— M/O /0 (x — p)~*w'(p) - [w(z) — w(p)]|dpdz + F(lf(i))a) /OL o)

+F(11_&) /OL /Ox(fﬂ — p)~“w'(p)w(p)dpdx
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s b [ @ () — e dids 4 7O [
e ) @ n 7 (e, dpa

~wah e e g (e o) ol

—l—m /OL r“w(x)dr + ﬂ(;_@ /OL (\w(p)]Q)p /pL(x — p) “dxdp.

Applying the Lebesgue integral differentiation theorem, we obtain that
(z _p>71/ w'(s)ds PZe, w'(z) for a.a. x
P

p=x
dt

p=0

and thus
2

=0.

lim (z — p)~*Jw(z) —w(p)]® = lim (z —p)>*

p—x p—x~

Hence, we obtain
L
/ 0%w(x) - w(z)dr =

/ / '“’ Dl da:—i—l/La;a\w(a:) — w(0)2de
1_a a+1 PEETOrM — @) Jo

—|—F(If(_0)a) /Lx U)( )dx + H’(;_OOAL(L —p)lia (|w(p)|2)pdp

= / / \w il d dm+1/L:p_°‘|w(m) —w(0)*dx
B 1—a 0‘“ b 2I'(1 — ) Jo

11

+FgﬁiOALfﬂw<mx+;rul)AQL—prﬂw@nwp—QF@_%wL Ju(0)f

T oar(1-a) / / |w a+1| ddeZF(ll_a)/oL(L—p)alw(p)lzdp

+m /OLp“‘|w(p)|2dp

and the proof is finished. O

@—m*éﬂw@w

Now, we will discuss in detail the results of Proposition in the case p = 2. We
note that for p = 2 an alternative proof of Proposition was given in [9]. At first let us

introduce the following functional spaces

H*(0,1) for € (0,3),
oH*(0,1) = {UEH%(OJ)Z 1'”;‘ dr < oo} for a:%,
{ue H*(0,1): u(0) =0} for ae(3,1)
and
12(0,1) for a€(0,1),
"HO0.1) = {ue H3(0,1): i 5L <00} for a =1,
{u e H*(0,1): wu(l) =0} for ae€(3,1).
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We set HuHOHa(o,U = HUHOHa(o,U = HUHHa(o,l) for a # % and

N ! u()l
el by = (Nl g+ ) “rde ]

1
1 2 2
_ 2 |u(z)]
lellogrt o1y = <”“”H5<o,1> +/0 12 dx) ’

The spaces defined above may be equivalently defined in terms of complex interpolation

NI

spaces, i.e.

oH*(0,1) = [L*(0,1),0H"(0,1)], and °H%(0,1) = [L*(0,1),"H"(0,1)]a.
Here, by ¢H'(0,1) we understand the subspace of H'(0,1) consisting of functions which
trace vanishes at the left endpoint of the interval. Analogously, "H'(0, 1) is a subspace of
H'(0,1) consisting of functions which trace vanishes at the right endpoint of the interval.
The following proposition is the special case of Proposition [2.25 It can be found also in
the Appendix of [I5] as an extended version of [0, Theorem 2.1].
Proposition 2.32. For a € [0,1] the operators I* : L*(0,1) — ¢H*(0,1) and 0% :
oH*(0,1) — L?(0,1) are isomorphism and the following inequalities hold

e Ml ) < 110%u||200,0) < calltllomaqny for u € oHY(0,1),

o 1T fllomao1y < I fllzz) < CallI* Flloany  for f € L(0,1).
Analogously, by the change of variables ¥ — 1 — x, we obtain that the operators I* :
L*(0,1) — °H*(0,1) and 0~ : " H*(0,1) — L?(0,1) are isomorphism and there hold the
inequalities

C;IHUHOHQ(O’l) < |0%u|2(0,1) < Callullomaqoy foru € 0HO‘(O, 1),

ca 122 fllorao,ny < I fllz20,) < call I fllomaony for f € L*(0,1).
Here ¢, denotes a positive constant dependent on .
Corollary 2.33. For a, 3 > 0 there holds 1 : (H*(0,1) — ¢H**?(0,1), where in the case
v>1
oHY(0,1)={f € H0,1): fP0)=0, k=0,...,|v] =1, fOD e m~bl0,1).
Furthermore, there exists a positive constant ¢ dependent only on «, 8 such that for every
f€eoH*(0,1)
HIBfHOHaJrB(oJ) =c HfHOHO‘(O,l)'
Proof. Tt is an easy consequence of Proposition . If f € oH*0,1) then, flle) ¢
oH*~12l(0,1). By Proposition , there exists w € L2(0,1) such that f{lel) = ja=lalqy,
Hence, applying Proposition [2.22] we get
f=1led fled) = plalpa=lely, — o,
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IPf = [P = [*F Py = [WPtel [fta-lftaly, (2.20)
If « + 3 < 1, then applying again Proposition we obtain that I°f € (H*"#(0,1).

Moreover, we note that w = 0% f and by Proposition [2.32] we have
— ]a—i—,@’

‘I oHOtB(0,1) H
In the case 1 < o + (8 from ([2.20]) we infer that

(IPHB0)=0for k=0,...,|f+a] -1 (2.21)

essiony < €08 0l oy < (@ B) 1 F oo

and by Proposition [2.32
(]Bf>(Lﬂ+aJ) — [Pra=lBtal,, 0H6+a—tﬂ+aJ(0’ 1).
Due to we may apply Poincaré inequality to obtain
) B ([ﬁJraJ — || 7Bt+a—1B+a]
H f OHaJrﬁ()l) = H (1°f) B HI w

< cllwll gz < cHa‘“*lan L))

oHo+B=La+61(0,1)
H flleD)

where we applied Proposition and ¢ = ¢(a, ).

oHatB—La+81(0,1)

L2(0,1) — oHe—lel(0,1) — HfHOHa (0,1)»

]

In subsequent parts of this thesis we will make use of the following local property
established in [28].

Lemma 2.34. Let f € (H*(0,1) for a € (0,1) and 8°f € H (0,1) for 8 € (3,1]. Then
fe Hﬁ+a(0 1) and for every 0 < § < w < 1 there exists a positive constant ¢ = ¢(0,w, , [3)

loc

such that
[l ooy < CULf Il roqowy + 10l oz w)- (2.22)

Proof. Let us fix 0 < 6 < w < 1. Then, by the assumption we have 9%f € Hﬁ(g,w).
Applying Proposition for x > §/2 we may write
fla) =170 f(x) = I1*(0°f — 0°f(0/2))(x) + (9" f(6/2))(x)
1

= T /0 o= p) O f(p) — 0" £(6/2)dp + F(la) / "z — p)* N f(p) — 0°£(5/2))dp

| 3 a1 L, * a—1
! (5/2)/ (2= )" dp+ 559 f(5/2)/2; (& —p)*dp
- F<1a> | @ =P f(p)dp + 13(0° F — 5°£(6/2)(x) + mlﬂ)@c —9/2)°0°f(5/2),

where we applied Definition and we denoted IS f(z) := ﬁ [5(x —p)*~tf(p)dp. We
note that by Corollary [2.32] the second component belongs to ¢ H O‘+B(g, w). The first and
third component belong to H**?(§,w) because they are smooth on the interval (§,w).
Thus f € H*(§,w). Moreover,

[l szavs 5.y < €, 850, 0)10% Fll 2oy + 10 Fll s 2wy + 107 F(0/2)]].
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2.3. PROPERTIES OF FRACTIONAL OPERATORS

To show the estimate (2.22)) it is enough to apply Proposition together with the
Sobolev estimate [0%f(0/2)| < ¢[|0f[| gs(5/2,,) Which holds because § > 3
]

We finish this section with two propositions from [27] which provide us an extension
of I* and 9* into wider functional spaces. The similar reasoning to the one carried in
Proposition may be found in [7, Lemma 5.

Proposition 2.35. For a € (0, %) the operators I* and 1¢ can be extended to bounded
and linear operators from H=*(0,1) := (H§(0,1))" to L*(0,1).

Here zero in the lower right index denotes vanishing trace at the boundary.
Proof. We will prove the claim only for I* while the proof for /¢ is analogous. By the
Fubini theorem for u,v € L?(0,1) we obtain
(I°u,v) = (u, ]fv) . (2.23)
Applying Proposition we obtain that I%v € °H%(0,1) and we may estimate

|(I%u,v)| < Hffv’

He(0,1) HUH(HO‘(O,l))’ < Ca HUHLQ(O,I) HUHH—a(o,l) )

where we used the fact that for o < 1 we have H§(0,1) = H*(0,1) and thus (Hg(0,1)) =
(H*(0,1))". The last inequality finishes the proof. O

Proposition 2.36. For o € (0, %) the operators 0% and 0% can be extended to bounded
and linear operators from L*(0,1) to H=*(0,1).

Proof. As in the previous proposition, we will prove the statement only for 9%, because
in the case 9% the proof is analogous. Let us assume that f,v € H*(0,1). (We recall
that for a € (0, 3) the space H*(0, 1) coincides with °H*(0,1) and ¢H*(0,1)). Then, from
Proposition [2.32] there exist g € L?(0, 1) such that 9°f = g and w € L*(0,1) such that

v = 1%w. Thus, we have
(0% f,v) = (g,[fw) = (I%g,w) = (f, afv) :
Making use of Proposition [2.32] one more time, we may estimate

10 F,0)] < (1f 20y 020

£2(0,1) < Ca ||f||L2(0,1) ||"U||Ha(0,1) ’

Hence, the identity (0% f,v) = ( f, 831)) extends 0% to a bounded and linear operator from
L2(0,1) to (H*(0,1))". Since the space (H(0,1))" coincides with H~*(0,1) for o € (0, 1)
the proof is finished. O
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2.4. Derivation of space-fractional Stefan model

In the next chapter we will investigate the properties of the operator %Da. To motivate
our study we discuss here the free boundary problem of space-fractional diffusion which
was proposed in [32]. Here, we present a derivation of the model. The solution to this
problem will be obtained in Chapter 4.

We will use a terminology of a heat transfer and the phenomenon of changing the phase of
medium from solid to liquid. However, the following model may describe other anomalous
diffusion processes as well, for example the mass transport and solidification of substances
in complex media.

We consider the domain (0, 00). We assume that at the initial time ¢ = 0 the domain is
divided into two parts (0,b), which can be regarded as liquid, and (b, 00), which can be
regarded as solid. We define the enthalpy function by E = u + . Here u(z,t) denotes
temperature of medium at point z in time ¢ and ¢ denotes the latent heat. We consider
a one-phase problem, hence we assume that v = 0 at solid. Furthermore, we consider
sharp-interphase problem. This means that the function ¢ has the form

1 in liquid,
- { 0 in solid.
We denote by ¢(z,t) the flux at point  at time ¢ and we assume the following non-local

form of the flux

(2.24)

0 in solid.

—D%u(zx,t) in liquid,
q(z,t) = { 1)

We note that since we discuss one-phase problem we have to put zero flux in the solid
domain. In this setting the principle of energy conservation takes the following form. For
every (a,d) C (0,00) there hold

;Zt/adE(x, t)de = q(a,t) — q(d,1). (2.25)

We will derive the space-fractional Stefan problem from the formulas (2.24)) and (2.25). Let

us denote by s(t) the interface. Then, at time ¢ the liquid occupies (0, s(¢)) and (s(t), c0)
belongs to the solid domain. Let us fix 7' > 0 an arbitrary time. We denote the space-time

domain occupied by the liquid by
Qsr ={(z,t): 0 <z <s(t), 0<t<T}
In order to derive the model, we impose the following regularity properties

s € AC[0,T), w(-,t) € L'(0,s(t)) for every t € (0,T), (2.26)

D%u(-,t) € C[0,s(t)] N AC1.(0, s(t)) for every t € (0,T). (2.27)
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We may verify that the solution (u, s) obtained in Theorem in Chapter 4 satisfies the
assumptions above. In fact, it has higher regularity. We take (a,t), (d,t) € Qsr, such that
a < d and we apply conservation law formula (2.25)) to get

d d
= | Btz = a(a,t) — a(d,0)
Hence,

d rd
%/ u(z,t) + lde = D%u(d, t) — D%u(a,t).
Under assumption (2.27)) we may write

d d
/ut(x,t)dx:/ (,fDo‘u(x,t)da:.

a X

Since the interval (a, d) was arbitrary we obtain

0 .
u = —D% in Q1.

ox

In order to obtain an equation for the interface s(-) we take arbitrary (a,t) € Qs and

arbitrary d > s(t). Then we may write the conservation law for an interval (a, d)
d rd
Since ¢(d,t) = 0 we have
d s d rd
%/a ulw,t) + 1dz + = /S@ u(z, t)dz = —D%u(a, ).

We assume that at the free boundary the medium is in the phase-change temperature, i. e.

u(s(t),t) = 0 and the function u vanishes in solid, thus we arrive at

s(¢)
/ w(z, t)dx + $(t) = —D%u(a,t).

Passing with a to s(t) and applying the assumptions (2.26)) and (2.27) we get

§(t) = —D(s(t),t) in (0, 7).

We complement our system with initial and boundary conditions. On the left endpoint of
the interval we assume zero Neumann boundary condition, however other options are also

possible. Finally, we obtain the system of equations

Uy — a%Dau =0 in Qs 1,

uz(0,t) =0, wu(t,s(t))=0 forte (0,7), (2.28)
u(z,0) = up(x) for 0 <z < s(0) = b,

5(t) = = (Du)(s(t),t) for t € (0,7).

We will solve this problem in Chapter 4.
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2.5. Derivation of time-fractional Stefan model

In this section we will derive the one-phase time-fractional Stefan model. We consider
the same setting as in the previous section, however now, following [33], we assume that
the flux is given by the Riemann-Liouville fractional derivative with respect to the time
variable, i.e.

1-a L d a—1

q(z,t) = =0 “ug(x,t) = “T(a) i o (t —7)% ug(z, 7)dr. (2.29)
The derivation of model presented in this section comes from [I14]. We will proceed as in
the previous section, i.e. we will derive the model from energy conservation formula ,
however now the diffusive flux is given by . Again we will use the terminology of the
heat transfer, however we note that the model may be applied also to other anomalous
diffusion processes. In order to derive the model rigorously we have to impose certain
regularity conditions on the interface s and the temperature function uv. We fix ¢* > 0 and

we denote
Qs = {(z,t): 0<z<s(t), te(0,t7)}
The standard setting of the initial-boundary conditions for the Stefan problem is the
following
u(x,0) =ug(x) > 0and u(0,t) =up(t) >0 or wu,(0,t) =un(t) <O0.
We expect that if ug =0, up =0 or ug =0, uy =0, then u = 0. Otherwise, we expect
5(t) > 0, (A1)
i.e. melting of solid. Secondly, we assume that

s € AC[0,t*], uy(z,-) € AC[s™!(x),t*] for every z € (0, s(t)),

uz(-,t) € AC|0, s(t) — €] for every € > 0 and every t € (0,t"), (A2)
uy(+,t) € L*(0,s(t)) for each t € (0,t).

We note that since we consider one-phase Stefan problem the temperature in the solid
vanishes. Therefore, the flux is nonzero only in the liquid part of the domain, i.e. in Q-

and it is given by the formula

=0 ug(z,t)  f 1) € Quye,
q(x,t) — s (x)u (ZE ) or (:L‘ ) Q )t (2‘30)
O fOI' ('T7 t) ¢ Qs,t*a
where
1 d gt a-1
=< [1(t — Uy (x, T)d for x <s(0),
0,74y (0, 1) :{ F<1a>cgf2( ™) _(1 m)dr (0) (2.31)
Sy Js i@t = 7)"ug(@, T)dr - for x> s(0).
The last of the regularity assumptions, that we will take advantage of, are
§(t) € L. ((0,¢7]) and D¢ yu(-,t) € LY(0,5(t)) for t € (0,t%). (A3)

Now we are ready to formulate the result.
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Theorem 2.37. Let us discuss the sharp one-phase one-dimensional Stefan problem
with the boundary condition u(s(t),t) = 0. Then, under the assumptions (A1)-(A2), the
conservation law (W with the flux given by (2.29 (-) leads to the following equation

0 < s(0),
Dgfl(z)u(m7t) - ua:x(xvt) = { 1 1 _ for ) S( ) (232)
—ta gt —s ()™ for xe(s(0),s(t))
for a.a. (x,t) € Qs+, where
N (1) = ﬁ Jot = 7)) Lu(z, 7)dr for  x <s(0), (2.33)
s (@)L 1) = 1 ft (t _ ) ad d 0 )
i) Js (@) ) *u(z,T)dr  for x> s(0).
Moreover, functions u and s are related by the formula
1 d [t
5(t) = — lim 61 ug(a,t —— lim / t — 1) Yy (a, 7)dr| . 2.34
(0= = Jim, O t) = st 14 [ -t nar| 230
Furthermore, if (A3) holds, then the additional boundary condition
u, (s(t),t) := lim u, (s(t) —e,t) =0 (2.35)
e—0+

is satisfied.

We note that the equation (2.32]) with the condition (2.34) have been already obtained

in [25]. However, here we obtained the additional relation ([2.35)).

Proof. In order to derive the system of equations from (2.25)), we apply the principle of
energy conservation to an arbitrary subset V' of the domain at time ¢ € (0,¢*). We will
consider two cases.

— IV = (a b) C (0,s(0)), then from (A1) we have V' C (0, s(t)) for each ¢t € (0,t*)
and gives
4 [/ u(z,t) + 1dm} = 0", (b, t) — 0 *uy(a, t).
dt Lv
Hence,

/ —u(r, t)dr = 0" “u, (b, t) — 0 uy(a,t).

We apply the fractional integral 7'~ with respect to the time variable to both sides of

the identity and with a use of assumption (A2) we arrive at
/V D%u(x,t)dx = u,(b,t) — uz(a,t).
Indeed, we note that since u, is absolutely continuous with respect to time we may
apply Proposition to get
29" u, (2, 1) = ug(w,t).
By the fundamental theorem of calculus we obtain
/V [Du(z,) — ez, t)]dz = 0.

Since V' C (0, s(0)) is arbitrary, we get

D%u(z,t) — uye(z,t) =0  for (x,t) € (0,s(0)) x (0,t%). (2.36)
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— If V = (a,b), where s(0) < a < s(t) < b, then (2.25)) has the form

s(t)
jt l/ u(x,t) + ldx

Differentiating the integral on the left hand side leads to

= q(a,t) = -0 (ayUz(a;t).

[ e e+ sOs(0).0) 1] = ~025, ).
Applying u(s(t),t) = 0, we get
/j(t) ;ltu(x, t)dw + 5(t) = =0, ua(a, t). (2.37)

If @ / s(t), then by the assumption (A2) the first term vanishes and as a consequence

we arrive at 1} Next, if we apply the operator Islffza) to both sides of 1) then

we obtain
1 t s(T) d 1 t
_— t—71)" ¢ — dxzd 7/ t— 1) %(7)d
I'l—a) /s_l(a)( 7) /a dru(I’T) raT + I'(l—a) s—l(a)( 7) tS(r)dr

= 81 oy Uz(a, t). (2.38)
We note that by the assumption (A2) we have that u,(a,-) € AC[s~*(a),t*] hence, by
Proposition [2.29, we get
[50) 0y ta(a, 1) = ug(a, ).
If we apply the Fubini theorem to the first term in (2.38)), then we arrive at the identity

s(t) 1 t
L Dgfl(x)u@j’ t)dl’ + F(l . Oé) /Sl(a) (t - T)_aé(’/‘)dT - _ul‘(av t) (239)
Applying the substitution 7 = s7!(x) we get

/stl(a) (t—7)"%(r)dr = /:(t) (t — s () *du.

We allow that w,(-,t) may admit singular behaviour near the phase change point. Thus,

we proceed very carefully. We fix £ > 0 such that a < s(t) — €, then, by (A2) we have

s(t)—e
—ug(a,t) = / Uz (2, t)dr — uy(s(t) — e, 1).
Making use of this identity in (2.39)) we obtain

/S(t)E [ o1y, t) — uge (2, 1) + (t— s_l(x))_o‘] dx

'l —a)
[ D) (= s @) dr = (s(t) — 2,0, (240
= u(z T —a) s (z T — Uy(S g, t). .

Let us choose arbitrary a such that s(0) < @ < a. Repeating the above calculations for

a instead of a, we obtain that

s(t)—e
/ [ 1T 1) = U (2, 1) +



Subtracting the sides of (2.40) and (2.41]) we arrive at
a 1
[ [t - wate + o=@ as=o ey
for arbitrary a,a € (s(0), s(t) — ) hence, we may deduce that

Dyl t) — gy (2, ) + (t—sHx)) =0 for x€ (s(0),s(t)), (2.43)

i.e. (2.32) is proven.
It remains to show ([2.35)). From (2.41) and (2.43]) we infer that

s [ 1 e
0= — /S(t)s [Dsl(x)u(a:,t) + m(t — s () ] dz — uy(s(t) — e, 1).

In order to obtain additional information about u,(s(t),t), we employ further regularity

I'l—«)

assumptions. Applying (A3) we immediately get

s(t) s(t)
li t—s () %z =0 and li o t)dx = 0. 2.44
lim S(t)_a( 5™ (2))%dr =0 and lim o s @u(,t)de =0.  (2.44)
Making use of ([2.44]) we obtain
lim wu,(s(t) —e,t) =0, (2.45)
e—0t

hence, we arrive at (2.35)), which finishes the proof of Theorem .
O

We will find a special solution to the system obtained in Theorem in Chapter 5.






Chapter 3

Operator aaxDO‘ as a generator of an analytic

semigroup

In this chapter we investigate the operator B%DO‘ from the perspective of operator
theory. We will proceed as follows. At first, we will characterize the domain of B%Da in
L?(0,1). Then, we will show that %Da generates a Cj -semigroup of contractions. Finally,
we will prove, by an appropriate estimate of the resolvent operator, that this semigroup
may be extended to an analytic semigroup on a sector of complex plane. The results from
the first section of this chapter, apart from Theorem [3.7, come from [27].

3.1. Case with mixed boundary conditions

Applying the identity (2.15) and then making use of Definition [2.18] we note that

a o, a 11—« _ O«
%D U= %I Uy = 0%y, (3.1)

whenever one of the sides of this identity is meaningful. By Proposition the domain
of & in L?(0,1) coincides with ¢H*(0,1). Thus, we may consider the domain of 2D
as {u € H'**(0,1) : u, € ¢H*(0,1)}. We complement the definition of domain with a

boundary condition u(1) = 0 and we arrive at

D(aaxDo‘) =D, :={uec H'(0,1) : u, € oH*(0,1), u(1) =0}. (3.2)

We equip D, with the norm

1
1 llp, = Il ey for a € (0, 1)\ {5}
and

’ux(x”z

= II71 1 d éf _ 1
1fllp, = (171280 + | “5r-da) fora=3.
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For clarity, let us describe how the space D, looks like in dependence of a. If a €

0,3)
we have D, = {u € H'**(0,1) : u(1) = 0}, for @ = 5 there holds D, = {u € H2(0,1
uy € oH2(0,1), u(1) = 0} and in the case a € (3,1) we have D, = {u € H'"*(0,1
u(0) = 0, u(l)=0}.

We note that if we prove that %Da : D, — L*(0,1) generates an analytic semigroup, we

)
)

will obtain existence and regularity results for a solution to

u — 2D = f in (0,1) x (0,7),
uz € oH*(0,1), wu(l,t)=0 forte (0,7), (3.3)
u(z,0) = ug(x) in (0,1).

In forthcoming sections we will also discuss the case with different boundary conditions.
However, at first we investigate (3.3)).

Theorem 3.1. Operator a%Da : D, C L*(0,1) — L*(0,1) generates a Cy semigroup of

contractions.

Proof. We will prove Theorem applying the Lumer-Philips theorem (see Theorem [2.9)).
At first we note that =D is densely defined in L?(0, 1), because C§°(0,1) C D,. In
order to verify the assumptions of Lumer-Philips theorem we need to show in addition
that -2 D® is dissipative and that R(I — 2 D) = L?*(0,1). (We recall that the definition
of dissipative operator was given in Definition . In order to show dissipativity of
%DO‘ we consider u € D,,. Since u, € ¢H*(0,1), then from Corollary we know that
D%y = I'""%u, € ¢H'(0,1). Hence, in particular D*u € AC[0,1] and (D%u)(0) = 0. We
apply the integration by parts formula and Proposition [2.30] to obtain

Re (—;EDO‘wu) — —Re /Ol(aiDau)(x) u(@)da

:/0 D Reu(m)-%Reu(a:) I—i—/o D Imu(x)%lmu(x) x

1 1
= / D Reu(z) - 0'"*D* Reu(z)dx + / D*Imu(x) - 0" *D* Im u(x)dw.
0 0

We may apply inequality (2.19) with w = D* Rew and w = D*Im u to obtain
2
L2(0,1)

8 11—«
Re <—D°‘u,u> > co |ID%U|) 1oe > cq H@TDO‘u
Ox H™Z(0,1)

2
U
£2(0,1)”’

1+«

(3.4)

= co|

where in the second inequality we used Propositiontogether with the fact that 1_7" < %
and the equality follows from Proposition [2.30 Here ¢, > 0 denotes a generic constant
dependent on «.

Now, we would like to show that R(E — 2D®) = L?(0,1). In fact, we are able to show

something more. We will state the result in the next lemma.
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3.1. CASE WITH MIXED BOUNDARY CONDITIONS

Lemma 3.2. For every \ € C belonging to the sector

Uq :={z€@\{0}:|argz|gm

ruqo) (35)

there holds 5

—D*) = L*(0,1).

20 =12(0,1)

Proof. To prove the lemma we fix g € L?(0,1) and \ belonging to 9,. We must prove that

ROE —

there exists u € D,, such that

d 0
)\u—a—xD u=g. (3.6)

We would like to calculate the solution directly. To that end, we will firstly solve equation
(3.6 with an arbitrary boundary condition u(0) = ug € C. Then, we will choose 1y which
will guarantee the zero condition at the other endpoint of the interval. We note that if we
search for a solution in {f € H*(0,1) : f, € ¢H*(0,1)}, then equation is equivalent
to

u = uy + My — 1My, (3.7)

Indeed, if we recall identity and assume that u, € ¢H*(0,1), then applying I to
both sides of yields
Uy = M — I[%g.

After having integrated this equality we arrive at . On the other hand, if we assume
that u € L%*(0,1) solves , then by Proposition it automatically belongs to
{f € H"(0,1): f, € oH*(0,1)} and in order to obtain it is enough to apply 80‘%
to (3.7).

Thus, we are going to solve . For this purpose, we apply to the operator 1**1

and we obtain
]'aJrlu — Ia+1u0 + )\]’2(a+1)u . ]’2(a+1)g.
Inserting this result in (3.7) we get
u(x) = uy — (1" g)(x) + MI* ug) () + N (120 u) (2) — M1 g)(2).
Iterating this procedure n times we arrive at
u(@) = ug Y (N IMOFI) (2) = FT NIV ) (2) 4 NI (2). (3.8)
k=0

k=0
We will show, that the last expression tends to zero as n — co. Indeed, we may note that,

since we search for the solutions in H'*%(0,1) C L>(0,1) and due to the presence of the
I-function in the denominator we have

A" glotn [l oo 0,1 1A
A [n(a+1) < . | (0,1)

X 0)(@)| < el o Tlat+)n+1) “Tlat+)n+1)
for each A € C uniformly with respect to x € [0, 1]. Thus, passing to the limit with n

—0asn— oo

in (3.8) we obtain the formula

u(z) = ugp i(/\kfk(o‘+1)1)(x) — i /\k’(](kﬂ)(a“)g)(x). (3.9)
k=0 k=0
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We will show that both series in (3.9)) are uniformly convergent and we will calculate

their sums. Indeed, we may directly compute the sum of the series. We note that by the

Example

xk(a—i—l)

(M) ) = T(k(a+1)+1)

Hence,

Z N (TR (1) = By Az, (3.10)

where E,.; denotes the Mittag-Leffler function given by Definition [2.19 To calculate the
sum of the second series, we apply the definition of fractional integral (see Definition [2.18)

x _ N\ atD)k+a
JAD) ) () / (z —s)

In order to interchange the order of integration and summation, we will firstly consider

the finite sum and then we will pass to the limit,

0o x _ o\ at)k+a n T (JT _ S)(a+1)k+a
/\k/ (z =) ds = li /\’“/ d
k;o 0 g(S>F((a+1)k3—l—a+1) s nEE‘ogo I T ko D™
.CL’ )(Oé+1)k‘+oz
— i k d
noo Jo Z T(a+Dkt+ta+)™

We would like to apply the Lebesgue dominated convergence theorem, thus we need to

indicate the majorant. We may estimate as follows
(a+1)k+o | ’)\|

Z k (x —s) |Z
IF'(a+1k+a+1) IF'(a+1k+a+1)
= [g(s)] Ea+1,a+1(M|)

and the last function is integrable because g € L?(0,1). Hence, applying the Lebesgue

dominated convergence theorem we arrive at

Z )\k (a+1)(k+1) g =g % 7% Z ()\xoz—i-l)k
Dk+ (a+1))

Finally, using thls result together with (| - we obtam that the function u given by ([3.9)

may be written by the following formula

u(z) = uOEa+1()\xo‘+1) — g% maEaH,aH()\xo‘H). (3.11)

We note that this function actually satisfies (3.7)). Indeed, applying Example we may
calculate

)\[aJrlu = ug io: )\k+1[(a+l)(k+l)1<x> —\ i [(a+1)(k+2)g($)
k=0 k=0

()\xa+1)k+1 00 )\k+1x(a+1)(k+2)—1
“OZ D(k+ 1)+ 1)_9*,§)F((a+1)(k+2))

()\xa—i-l)k 00 )\kx(a—l-l)(k—i-l)—l

222 (a+ Dk+1) g*;r((aﬁ)(kﬂ))‘
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3.1. CASE WITH MIXED BOUNDARY CONDITIONS

Hence,

00 )\.CCa+1)k ) )\kx(a—l—l)(k—l—l)—l P
FAO -1 g =y |1+ ( —g* +
Yo Y §=to ;r((a+1)k+ )| & T((a+DE+1)  Ta+1)

and the last formula is equal to u. Thus, u given by formula is a solution to (3.7))
and hence it is also a solution to (3.6)) with a boundary condition %(0) = ug. It remains to
solve equation (|3.6) with the zero condition at the right endpoint of the interval. For this
purpose, we take x = 1 in and we obtain

u(1) = o Bar1(N) = (9 % Y Bait,a01 (Ay*™))(1).
To obtain u(1) = 0 we take
o = (Bar1(N) (9 * Y Barran (g™ ))(1).
We note that ug is well defined because, taking v = a4+ 1, u = 1 in Proposition [2.27, we
obtain that F,.1(\) # 0 for A belonging to the sector ¢. Inserting this ug in (3.11)) we
obtain a formula for a solution to (3.6)) which belongs to D,,:
w(@) = (Ear1(N) 79 * Y Barr,ar1 (A )) (1) Earr (A2 — g% 2 Eg g a1 (M),

In this way we proved the lemma. O

Lemma together with the dissipative property of %Da allows us to apply Theo-
rem which finishes the proof of Theorem O

Our next goal is to prove that the semigroup generated by %D"‘ can be extended to an
analytic semigroup on a sector of complex plane. Before we will prove that result, we need
to formulate two auxiliary lemmas. A similar reasoning to the one carried in Lemma [3.3

may be found in [I0, Lemma 6].

Lemma 3.3. The formulas HDHT& u

on D,.

and HUHHH—Ta : define equivalent norms

L2(0,1) (0,1

Proof. We denote by c, a generic constant dependent only on «. Firstly, we will show

that there exists ¢, such that

14+«

[

L2(0,1) < Ca ||UHH1+TQ(O,1) '

Using formula (2.15) and Proposition we may write
I

11—«

2ul’

L2(0,1) - ‘ L2(0,1) < Ca ||UIHHQT_1(O,1) '

Due to Remark we know that a% is a bounded and linear operator from H*(0,1) to
H*71(0,1) for s € [0,1] \ {5} thus

1+«

27(0,1)

U o1, < ¢, ||u||Ha+1 .

To show the opposite inequality we notice that since u € D, we have

14+« l—a

u(x) = —/; Uy (8)ds = —1_% 1_% wu,(x),
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where we applied Proposition to right-side fractional integral defined in Definition [2.20
Thus, by Proposition [2.32] we may estimate

1+« 11—«

I-%2 1% u,

l1—a

< o 1% Uy

u « — .
| HH%(OJ) ‘ 0FF (0,1) L2(0,1)
Applying Proposition [2.35] and Proposition [2.36] we may estimate further

HUHHLH(O 1) < callu 96”1{*(01 = Ca H@ = Ual| (01)
11—« 1+a
< ¢y H]Tu,; = ¢, HDT U ,
L2(0,1) L2(0,1)
which finishes the proof. m
Lemma 3.4. For u € D, we have
0
Re(— e — D%, u) > ¢, HuH 152 o) (3.12)
and 5
(=g D )| < b (2 a5 0 (3.13)

where ¢y, by are positive constant which depends only on .

Proof. We have already obtained in ) that

1+o¢ 2

0
Re < — D%y u) > cy HD U
Ox
Hence, in order to prove (3.12) it is enough to apply the norm equivalence from Lemma

Now, we will prove (3.13]). In fact, we will show something more, i. e. there exists b, > 0
such that for every u € D, and every w € AC[0,1] N H 2% (0,1) there holds

£2(0,1)

0
(—%Dau,w) < ba ||u||H“T‘*(0,1) ||w||0HHTa(O,1) '

At first, we notice that since u € D,, we know that u, € ¢H*(0, 1) and from Corollary
we infer that D = I'"%u, € ¢H'(0,1). Applying Remark in the first identity below

and Proposition [2.30]in the second one, we may write

9 ey — 950" pou — 0" D = L1 pt
Ox Ox

We integrate by parts and make use of w(1) = 0, (D*u)(0) = 0, the identity (2.23) and
Deﬁmtlon 2.20] to get

( Do‘u w) / =Dy wde = — / [="D %y wmdx—/ D u- D wdz.

(3.14)

(3.15)
Thus,
a 1 1+« lta
(——D%,w)| = / D= u- D “wdz| < HDTu ’ 2 (3.16)
ox 0 L?(0,1) £2(0,1)
Since w(1) = 0, applying Proposition we obtain that
1+oc 14a
HD = |0 w < ba flwll, o l[wll e
L2(0,1) L2(0,1) 500 H™2(0,1)

where by b, we denote a positive constant dependent on «. Making use of this estimate

and the norm equivalence from Lemma [3.3|in (3.16)) we obtain (3.14)). Putting w = u we

arrive at estimate (3.13)). [
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3.1. CASE WITH MIXED BOUNDARY CONDITIONS

Finally, we are ready to prove the main theorem.

Theorem 3.5. The operator 2D* : D, C L*(0,1) — L*(0,1) is densely defined sectorial

operator, thus it generates an analytic semigroup.

Proof. We will give the proof of analyticity following the proof of [23, Ch. 7, Theorem 2.7,
where the elliptic operators are studied.

At first, we notice that since L?(0,1) is a Hilbert space, the numerical range of —%DO‘
(see Proposition [2.10)) equals

a « a «
S(— 895D )= {(u, —%D u) 14 € Do, ull 20y = 1}.
Indeed, let us assume that there exists w € L?(0, 1) such that w201y =1 and (w,u) =1

for u such that [lul[;2( ;) = 1. Then
2 2 2
Jw — U||L2(0,1) = ||w||L2(071) —2Re(w, u) + ||U||L2(0,1) =0,
hence w = u. We note that by 1} zero does not belong to S (—a%DO‘). Let us denote
z = (u ——Da ) Then, in view of (3.12) and (3.13), we obtain that
Im 2 < ba
Rez| = ¢,

)

[tan(arg z)| = |
which implies

gl et
)

and arctan(i’—z) < 7. We may choose v such that arctan( lc’a < v < 7 and denote
Y, ={A: XA #0, Jarg\| > v}. Then, ¥, C (C\S( D=). We will show that there
exists a positive constant ¢, such that

d(A, S(—(,iD")) > ¢, |\ forall A€ X,. (3.17)

Indeed, in the case when A\ € ¥, is such that |argA| > 7 + arctan(g—z) we obtain that
d(\, S(—£ D)) > |A]. If we assume that v < arg A < I + arctan(g—z) we arrive at

d(\, S(=5 D)

> sin(arg A\ — arctan(b—a)) > sin(v — arctan(b—a)).

P\’ Ca Ca
Finally, if —Z — arctan( ) <arg A < —v we get that
)\,S —= ba ba
A (=, )) > |sin(arg A + arctan(—))| > |sin(—v + arctan(—))

BY - Ca Ca
and we obtain (3.17). By Theorem [3.1| we know that (—co,0] C p(—:Z D®), which implies
that

0

We may apply Proposition m to the operator ——D"‘ to obtain that spectrum of —@D"‘
is contained in C\ ¥, which means that 3, C p(—a%Da) and

o .\ 1
‘ (AE_ T >> = d(\ S(2 D)) SRRV

forall A € 3,.

51



CHAPTER 3. OPERATOR B%Da AS A GENERATOR OF AN ANALYTIC SEMIGROUP

Thus, the set {\ € C: Jarg \| < 7 — v} U{0} C p(ZD*) and

o _\'
(- 20)

Hence, we showed that %Da is sectorial and the semigroup generated by %Da can be

for every A € C\ {0} : larg \| <7 — .

_CV| |

extended to the analytic semigroup on a sector of complex plane. O

We finish this section with a simple application of obtained results.

Theorem 3.6. Let us consider problem with f = 0. If we assume that uy €
L*(0,1), then there exists exactly one solution to which belongs to C([0,T]; L*(0,1))N
C((0,T); Do) N CH((0,T]; L*(0,1)). Furthermore, there exists a positive constant ¢ = ¢(T),
such that the following estimate holds for every t € (0,T]

0
- D% 1) < clJuoll 20
Ox £2(0,1) O

Nevertheless, u € C*((0,T]; L*(0,1)) and for every t € (0,T), for very k € N we have
u(-,t) € D((ZD*)¥). The last property implies that u(-,t) € C*(0,1) for everyt € (0,T],

however u has a singularity of the form x**! at the left endpoint of the interval.

[Ju(-, t)HL?(o,l) + 1 (-, t)”LQ(O,l) +1

Proof. Since, we know that the operator B%Da generates an analytic semigroup, we may
apply to the general semigroup theory. Then, in view of Theorem m, it remains to
describe how a domain of k -th power of %D"‘ looks like. Let us focus on k = 2. Then,
u € D((Z£D*)?) if u € D, and 2 D*u € D,. Applying Proposition we obtain that
Uy = 190%, = I%(0%u,; — (0%uy)(0)) + (0%u,)(0) 1.
We integrate this identity and apply Proposition [2.22] and Example [2.2]
u() = u(0) + I (D%, — (1) (0)) + (07,) (0)

x
I'2+a)

By the assumption and identity there holds 0%u, — (0%u,)(0) € ¢H'**(0,1). Hence,
by Corollary we obtain that 17 (0%, — (0%u,)(0)) belongs to o H21+*)(0,1). In the
case u € D((ZD*)*) we iterate the above procedure and we arrive at

k xn(l—i—a)
) = (G DV O) 5w gy 1 (G = (D" ) 0))

n=0
By Corollary the last component belongs to ¢H (HO‘)(k“)(O, 1) and we note that

function u has a singularity of the form 2! at the origin. By Theorem a solution to
(3-3) belongs to N2y D((:Z D)), thus we obtained the claim. O

Remark 3.1. One may consider the problem with nonzero right-hand-side. Then the

solution is obtained by the variation of constant formula, see for example Theorem [2.13

Remark 3.2. The result of Theorem may be extended to the case of operator %p(m)Daz
D, — L?*(0,1), where p € WH(0,1) is positive and separated away from zero. The proof

may be found in [27], however, we skip the proof here, since it is technical.
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Let us show another possible generalization of this problem.

Theorem 3.7. Let us consider the operator A : D, C LQ(O, 1) = L?*(0,1) defined by
Au —Dau +/ D”ud%
where 0 < f < a <1 and

= 3" (=) + ()

k=1

We assume that M € N, q, > 0 for k = 1,..., M, v € (0,5] fork =1,...,M and
we LY0,8), w>0. Then, A: D, C L?(0,1) — L*(0,1) is sectorial, hence it generates

an analytic semigroup.

Proof. In order to prove the theorem we will apply Proposition [2.14] Let us consider
the operator B : Dy — L*(0,1), defined by Bu := [ ,u(v)a%Dvudv. We recall that the
definition of space Dg was given in . Let us justify the definition of operator B. At
first, we will show that for 0 < v < 8 and u € Dy function v — ,u(fy)%D"’u is measurable
with values in L?(0,1). Indeed, applying identity and Theorem [2.7| we obtain that for
u € Dg there holds a%DVU = uy = I°770%u,. Applying Proposition together with
Definition [2.6(we obtain that the function v +— I°=79%u, is continuous on [0, 3] with values
in L?(0,1). Thus, for 0 < v < 8 and u € Dj function 7 ,u(fy)a%D%L is measurable with
values in L?(0,1). We note that for u € Dg
(9 ——Du dy = / 7) 197 uz”L? 0.1) 47-

B
HBUHL2 0,1 S/ ()
O = Jo Ox L2(0,1)

Applying Proposition we obtain that there exists ¢ > 0 (independent on 7 and /) such
that for every v € (0, )

B—~
Ha ux||L2(01 < CH@Bux 5

12 01) ”U’-TH ) .

Hence, we may estimate further

10"l 20 < €(8) Il el = e(3) lllp,
and
B
1Bull sy < e(8) ull, | n(r)dy = e(B,11) Jul,

Thus, B € B(Dg, L*(0,1)). We note that in our case we may show more direct estimate

without the use of Proposition . Indeed, recalling that for every f € L?(0,1) and every

a > 0 there holds [|1% |2,y < ﬁ £l 72,1y We may write

1

< Ha

201 = T(1+ 3 — 7)

where in the last inequality we used the fact that I'(-) > 5 on [1,2].

Furthermore, D, C Dy C L?*(0,1) and for every u € D,, we have

||87U1HL2(0,1) = Hjﬁfvaﬁux

sy < 2Nl

B 1-8 1-8
lullp, < elluallymeey < el B) luall e el 2,0 < (e 5) Jull3, el 2,1y 5
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where in the first estimate we applied the Poincaré inequality, while in the second one
we applied interpolation estimate ([19, Corollary 1.2.7.]). Applying again ([19, Corollary

1.2.7.]) we may write

_1
HU:BHLZ(O,1) < ||“HH1(0,1) < c(a )H“”z;lon ”UH?[ﬁa(o,l) < (o )Hu”z;ﬂon ||“||a+1 :

Together we obtain that
a8 148

[ullp, < cle, )IIUIIE%D [ullp, -

Hence, the claim follows from Proposition [2.14]

[
3.2. Case with Dirichlet boundary conditions
In this section we will consider the problem with Dirichlet boundary conditions.
u — LD = f in (0,1) x (0,7,
u(0,t) =0, u(l,t)=0 forte (0,7), (3.18)
u(z,0) = up(x) in (0,1),

To this end, we have to redefine the domain of a%Da. Let us introduce

D, := {u =w — w(1)z®, where w € ¢H'™(0,1)}.
From Example we infer that 2 ¢ oH'**(0,1). Thus, for every u € D, the function w
is uniquely determined. Indeed, if we assume that there exist wy, ws € ¢ H'*(0,1) such
that w; — wy (1)z% = wy — wo(1)z®, then wy(1) = wq(1) and wy = wy in (H*(0,1). We
equip D, with the following norm

1
lull, = l[wll e, for a € (0, 1)\ {5}

1
(@) \? I
Julls, = <||wHH201+ [ 0) o= L

By identity 1D and Example we may easily calculate %D“wo‘ = 0. Thus,
0 _
—D*: D, — L*(0,1).
- Ox (0, }
Moreover D, is dense in L*(0, 1), because C°(0,1) € D,. We will show that 2 D* defined

on D, is also a generator of analytic semigroup on L?(0,1). The strategy of the proof is
as follows. We will prove Lemma and Lemma for C%D“ defined on D, and then we
will repeat the proof of Theorem to obtain the claim. We will begin with the analysis

and

of the resolvent.

Lemma 3.8. Let us discuss %DO‘ : Dy — L*(0,1). Then, for every A € C belonging to

the sector
m(a+1)
2

Vo :={2€ C\ {0} :|argz| < }u {0} (3.19)
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3.2. CASE WITH DIRICHLET BOUNDARY CONDITIONS

there holds
0

R(AE — —D%) = L*(0,1).

(B~ D% = I(0,1)

Proof. To prove the lemma we fix g € L?(0,1) and A belonging to 9,. We must prove that
there exists u € D, such that

0
— D% = q. 2
Au D u=9 (3.20)

We will proceed as in the proof of Lemma [3.2] We note that if we search for a solution
in D,, then it can be represented in the form u = w — w(1)z* and, by Example
Dy = D*w — w(1)'(a + 1). Since w € H™(0, 1), we have D®w € ¢H'(0, 1) and hence
Du(0) = —w(1)T'(a + 1). At first we will solve the equation with initial conditions
u(0) = 0 and D*u(0) = a for arbitrary a € C and then we will choose a such that u(1) = 0.
At first, let us transform the equation into integral form. To this end we assume that
u which may be written in the form u = w + ﬁxa where w € ¢H'(0, 1), solves .
Then, having integrated we obtain that

D% = (D%u)(0) + Mu—Ig =a+ MNu— Ig.

Applying 1¢ we get
u=al®l + My — [*F1g. (3.21)

We note that if we search for a solution such that there exists w € ¢ H'7*(0, 1), such that

u=w+ ﬁxa, then equation ‘) is equivalent with 1} Indeed, it follows from

Proposition together with Example (2.2
We apply the operator It to (3.21]) and we obtain

u=al®l — [oHrlg + )\a[2a+11 + )\2[2(a+1)u . )\[2(()4+1)g.
[terating this procedure n times we arrive at

u=a i )\k[oz—‘rk(oz—i-l)l _ i Akl(k+1)(a+1)g + )\n—i-l](n-‘rl)(oz—i-l)u' (322)
k=0 k=0
We will show, that the last expression tends to zero as n — co. Indeed, we may note that,

since o H'**(0,1) € L*(0, 1) and due to the presence of the I-function in the denominator
we have

A" glotn [[ll oo o1 [AI"
ODT((a+1Dn+1) =~ I'((a+1)n+1)
for each A\ € C uniformly with respect to z € [0, 1]. Thus, passing to the limit with n in
we obtain the formula

U=a i /\k1a+k(a+1)1 . i )\k](k+1)(a+1)g. (323)
k=0 k=0
We have already proven in the proof of Lemma that the second series is uniformly

—0asn— o0

AU ()] < ul e

convergent and

Z )\k](k+1)(a+1)g =g xaEa+1,a+1<)\xa+1)-
k=0
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The sum of the first series may be easily calculated. Indeed, from Example we have
potk(at1)

Ia+k(a+l)1 _
Fl+a+k(a+1))’
hence .
Z /\kja+k(oc+1)1 — IaEa+17a+1()\l'a+1).
k=0
Together, we obtain that function u given by (3.23) may be equivalently written as
u(z) = ax”Eat1.001 (A2 — g% 2% Eq i1 a1 (A2 th). (3.24)

We may check that u given by the formula (3.24)) is a solution to (3.21]) and (3.20]) with
boundary conditions u(0) = 0 and D®u(0) = a by a similar calculation as the one carried

in the proof of Lemma 3.2 It remains to choose the value @ in such a way that u(1) = 0.

For this purpose, we take x = 1 in (3.24)) and we obtain

u<1) = aEaJrl,aJrl()‘) - (g * yaEa+1,a+l()‘ya+l))(1)'
To obtain that u(1) = 0 we choose

@ = Bot1,0+1(A) (9% ¥ Bati,ar1 Ay ™)) (1)
We note that a is well defined because, taking v = u = a + 1 in Proposition [2.27] we
obtain that E,i1a11(A) # 0 for A belonging to the sector ¥. Summing up the results we
obtain that there exists a solution to (3.20) which belongs to D, and it is represented by

the formula

aEa o by a+1 1
U(CL’) _ (g *Y +1, +1( Yy ))( )l‘aEa+17a+1()\ZEa+1) — g IaEa+1,a+1()\xa+l)-
Ea+1,a+1(>\)
We note that here function w from the definition of D, is given by
(9 %Y Batr.ar1(Ay*))(1) Aot 1
w(z) = ’ x® — g% 2Eaiq ar1(Az®).
(z) Eottas1(N) Z (a+Dn+a+1) 7 il )
In this way we proved the lemma. O]
Our next aim is to prove the following.
Lemma 3.9. For u € D,, we have
a o
Re(— axD U, u) > Cq ||U,||Hl+7a(0 : (3.25)
and 5
(gD < e (3.26)

where ¢y, by are positive constants which depends only on c.

Proof. At first we will prove (3.25). We fix u € D,. Since u(0) = u(1) = 0, we may
integrate by parts to obtain

0 . B 1o —
Re (—(%D u,u) = —Re/o (%D u)(z) - u(z)dx

1D°‘ 0 d 1DO‘I 51 d
—/0 Reu(x) - %Reu( x) x+/0 mu(z) - g mu(x)dz.
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3.2. CASE WITH DIRICHLET BOUNDARY CONDITIONS

We note that D, C AC [0, 1] hence we may apply Proposition and we get

ox
By the definition of D, we know that Du € AC|0,1], hence we are allowed to apply
inequality (2.19) with w = D*Rew and w = D® Imu to obtain

1 1
Re <_6Dau7u> :/ D®Reu(z)-0'"*D*Re u(x)dx+/ D*Imu(z)-0"*D* Imu(x)dw.
0 0

caHé? z D%

0
Re (—D“u,u) > cq, HD“uH2 1-a >
or H™2 (0,1) L2(0,1)

1+« 2

1+
:CO‘HDQ <

L2(0 1) = Ca HUHHL(O -

= ¢, HE)

L2(0,1)
Here in the second inequality we used Proposition the first equality follows from
Proposition [2.30] the second equality is a consequence of the fact that u vanishes at zero
and the last inequality comes from Proposition . It remains to show . We make
use of Remark Definition and Proposition to arrive at the following sequence
of identities
;ajDo‘u =929 D = aaf ‘D
Then, we apply integration by parts formula and identity (2.23] - ) to get

1 (&3
;Dau udr = — / 15D U - Upydr = — / D5 U - I Kl Uy dT.
T

We note that the boundary terms in integration by parts formula vanish due to u(0) =

u(1) = 0. Finally, we get

L9 _
/0 %D u - udx

1+a
= o

5 —

1ta
§HD2u U

‘ 1+a

12(0,1)

L2(0,1)

< ba ||ull} 150

‘a

L2 0 1) LQ(O,l)

We note that here we again used the fact that u vanishes at the boundary and we applied
Proposition [2.32] O

Now we are able to state the result.

Theorem 3.10. The operator 2D : D, C L*(0,1) — L*(0,1) is a densely defined

sectorial operator, thus it generates an analytic semigroup.

Proof. Once we established Lemma and Lemma [3.9 the argument is identical as in
the proof of Theorem 3.5 O

Remark 3.3. Theorem allows us to apply Theorem to obtain ewistence and
reqularity results for a solution to with f = 0. We note, that in this case, the
solution has a singularity at the left endpoint of the interval of the form x®. Hence, in

general the solution to this problem is less reqular then in the case of boundary condition
u.(0,t) = 0.
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CHAPTER 3. OPERATOR B%Da AS A GENERATOR OF AN ANALYTIC SEMIGROUP

3.2.1. Non-homogenous boundary conditions

We finish this section with a remark about the case with non-homogenous boundary

conditions. Let us discuss

u— 2D = f in (0,1) x (0,7,
uw(0,t) = g(t), wu(l,t)="n(t) forte (0,T), (3.27)
u(z,0) = up(x) in (0,1),
where g,h € C'[0,T] and f € C%([0,T7]; L*(0,1)) for a 0 < v < 1. Then we may define
v(x,t) == u(z,t) — g(t)n(x) — h(t)e(z), (3.28)

where 7 and ¢ are smooth functions such that n = 1, ¢ = 0 near the left endpoint of the
interval and n = 0, ¢ = 1 near the right endpoint of the interval. We rewrite the system
(3.27) in terms of function v

v — 2D =f in (0,1) x (0,7,
v(0,t) =0, v(l,t)=0 forte (0,7), (3.29)
v(x,0) = vo(z) in (0,1),
where 5 5
f =1 =g @n() = KE)p) + g(t)5-Dn(x) + h(t) 5-D¢()
and

vo(x) = uo(x) — g(0)n(x) — h(0)p(z).

We note that ¢,,n, € oH*(0,1), hence 2D € L*(0,1) and ZD%p € L*(0,1). Thus, we
may apply the standard theory of analytic semigroups to obtain existence and regularity
results for this problem. For instance, since f € C%([0,T]; L*(0,1)) we may apply
Theorem to obtain basic result concerning the existence of the solution to (3.29)).

Then, we recover the solution to (3.27) from identity (3.28)).

3.3. Case with prescribed flux on the left boundary

In this section we will consider the problem with prescribed nonlocal flux on the left

boundary, i.e.

u— 2D = f in (0,1) x (0,7),
(Du)(0,t) = h(t), u(l,t)=0 forte (0,7), (3.30)
u(z,0) = ug(x) in (0,1).

We note that the condition on (D*u)(0) is connected with regularity of function w.

Indeed, we have the following.

Lemma 3.11. Let F' be an absolutely continuous function and f := F'. Then we denote

1

(DF)(0) :== lim T(i—a) /Ox(if —p)~“f(p)dp.
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3.3. CASE WITH PRESCRIBED FLUX ON THE LEFT BOUNDARY

1. If (D*F)(0) exists and (D*F)(0) = ¢, then lim,_,g % = Fara)
2. if the limit lim,_,o J(f?i)l exists and lim,_,q yfa@l = F(Ca), then (D*F)(0) = c.

Proof. Let us firstly assume that
. 1 v —a .
}:%F(l—a)/o (. —p) " f(p)dp = c.

We fix € > 0. Then, there exists xq > 0 such that for every 0 <y < xg there holds

1 y
—e< ———— —p)® dp < .
c €_F(1_a>/0(y p) “flp)dp<e+c
We apply I* to these inequalities. By Example [2.2) and Proposition [2.22] we get
(0% o

(c— &)t
I'(l+ a)
which is equivalent with

< Fly) <(c+¢e) for every y < xy,

_y
(14 a)

F
‘F(l + a)# —¢| < e for every y < zy.

Y
. Now, we assume that lim,_, % = ﬁ Then, we obtain

Fly) _ ¢
ye I(1+a)

that for any fixed € > 0, there exists o > 0 such that for all 0 < y < zg

(Fay ~ W < I0) < (5

Applying I'™® to the inequalities above we obtain for every 0 < y < x that
c—el(a) < (I'*f)(y) < c+el(a),

Hence, lim,_,o

+e)y* .

where we made use of Example Since € > 0 is arbitrary we obtain the claim. O

In view of Lemma it is natural to search for a solution to (3.30)) in the form

h(t)
— ) ga L € oH(0,1). 3.31
u F(l—i—a)x +v, v, € ¢H*(0,1) (3.31)
Then, we may rewrite problem (3.30]) in terms of function v. Namely,
v — D% = f — sz in (0,1) x (0,7),
ve € oH(0,1), w(1,t) = —pis  for t €(0,7), (3.32)
v(x,0) = ug(r) — ipea in (0,1).
Then, we introduce
(@.0) = vl ) + D) (3.33)
w(x,t) =v(x ———p(x :
) ) F(l —"_ a{)(p )

where ¢ is a smooth function such that ¢ = 0 near the left endpoint of the interval and
¢ = 1 near the right endpoint of the interval. We may rewrite system (3.32)) in terms of

function w, i.e.

w— 2D = f in (0,1) x (0,7,
w, € oH(0,1), w(l,t)=0 forte (0,T), (3.34)
w(z,0) = wy(z) in (0,1),
where
P W) . . ht) 9 .,
f=r- m(ﬂf — () — m%l) v,
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CHAPTER 3. OPERATOR B%Da AS A GENERATOR OF AN ANALYTIC SEMIGROUP

h(0)

U)g(l’) = Uo(al) + m

(o(z) = 2%).

In order to solve (|3.34]) we may apply Theorem and the standard theory of analytic
semigroups. For example, assuming f € C**(0,T; L*(0,1)), h € C**([0,T]), uo € L*(0,1),
we may apply Theorem . Then, we can recover a solution to from the identities
and . We summarize the obtained result in the following theorem.

Theorem 3.12. Let us assume that f € C®(0,T;L*(0,1)), h € C**([0,T]) and ug €
L*(0,1). Then there exists a solution to such that for every t € (0,T] the equation
(3-30)1 is satisfied in L*(0,1) and there hold u(1,t) = 0, (D*u)(0,t) = h(t). Furthermore,
u e C([0,T]; L*(0,1)) N CY((0,T]; L*(0,1)) and for every e > 0 u € C((0,T]; H'T*(e,1)).

3.4. Case with less regular source term

3.4.1. Motivation

Studying the results from previous sections, we may infer, that one may pass from the
problem with non-homogenous Dirichlet boundary conditions to the homogenous problem
rather painless. Indeed, it is enough to use an appropriate auxiliary function and transform
the problem to the one with the source term that is square integrable with respect to
space variable. However, we note that the situation appears to be different if we deal with

the problem with non-homogenous Neumann condition

w — 2D =0 in (0,1) x (0,7),
uz(0,t) = h(t), u(l,t)=0 forte (0,T), (3.35)
u(z,0) = ug(x) in (0,1).

We would like to somehow transform this problem to (3.3)). To this end, we fix a smooth

function p such that p’(0) = 1, p(1) = 0 and we introduce an auxiliary function v as follows

v(z,t) = u(x,t) — h(t)p(x). (3.36)

Then, applying identity (3.1)) and Remark we obtain

—Q

0
Z D% = 0%, = Dpp + ———.
p=0% Pt T o)

Oz

Hence, our problem may be reduced to

v = 5 D% = =l ()p + h(t)D%p, + riigya ™ in (0,1) x (0,7),

v.(0,t) =0, v(1,t)=0 for t € (0,7T), (3.37)
v(x,0) = up(z) — h(0)p(z) =: vo(z) in (0,1).
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3.4. CASE WITH LESS REGULAR SOURCE TERM

We note that the last component of the source function has a singularity and in the case
of a € [%, 1) the singularity is not square integrable. Hence, we are not allowed to use
already obtained results. This motivates us to investigate the problem ({3.3) with f that
does not belong to L?*(0,1). Although the analytic semigroup theory is a powerful tool in
the theory of existence and regularity of solutions to parabolic type problems, it is not
very flexible. That is way, here we would like to present a different approach, based on
energy estimates. We will find weak solutions to the problem (3.3) with rough regularity
of the source term, thus in the case when we are not able to apply directly the semigroup

theory.

3.4.2. Energy method

Our goal is to solve the following problem

vy — %Do‘v =f in (0,1) x (0,7,
vy € 0H*(0,1), v(1,t)=0 forte (0,7), (3.38)
v(x,0) = vo(x) in (0,1),

where f € L*(0,T; L'(0,1)). We will solve this problem by approximation. Let us take a
sequence f¢ € C'([0,T]; D,) such that f¢ — f in L*(0,T; L*(0,1)). Let us show that such
sequence exists. There exists a sequence of simple functions s, = Zﬁzo XE&, (t)gn, where
gn € L'(0,1) and E,, are measurable subsets of (0,7, such that s, — fin L*(0,T; L*(0,1)).

We define a sequence f*™9 as follows

k
(2, t) =" ns * xm, (t)g0,
n=0

where 75 denotes a standard mollifier and {g"} C C§°(0,1) is such that for every n we
have g™ — g, as m — oo in L'(0,1). Then f*™° € C*°([0,T]; Cs°(0,1)) and fEmo — f
in L?(0,T;L'(0,1)) as m — oo, k — oo and § — 0. Let us assume that vy € L?*(0,1).
By Theorem [2.12] and Theorem we obtain that there exists exactly one solution to

approximate problem

vf — LD = f° in (0,1) x (0,7),
vE € oH*(0,1), v°(1,t) =0 forte (0,7), (3.39)
ve(x,0) = vo(x) in (0,1),

which belongs to C([0,T]; L?(0,1)) N C((0,T]; D,) N CH((0,T]; L*(0,1)). Let us denote by

T'(t) the analytic semigroup generated by %DO‘ given by Theorem . Then, the solution

to (3.39) is given by the formula

v (w1) = T(e)uole) + [ Tt — ) (2, 7Y

We note that the interpolation space between L? and D, is characterized as follows
[LZ(Ov 1)7 Da]@ =
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_ 0H(1+a)9(0’ 1) if 6 € (0,min{1, 72(1:1@)})
{fu e H3F9(0,1) : u(1) =0, u, € gHI+=10,1)} if 6 € [min{l, -2~ e 1+a 1]
(3.40)
For clarity, let us describe how the interpolation space looks like in dependence of o and 6.
[L2(0,1),D,]p =
H(1+a)0(0, 1) if 0¢ (0, ‘2(110[))7 OB (07 1)7
1 .
0H3(0,1) if 0= 2(11+a), a e (0,1),
| fwe HO9(0,1) 1 u(1) = 0) i 0€ (e ) ae (03],
{ue H(0,1) : u(1) = 0} it 0c (2(1£La)7 2(13—&))’ a € (51),
{ue H3(0,1) :u(1) =0, u, € H2(0,1)} if 6= ey @€ (3 1),
fue HIF9(0,1) su(l) = 0, u,(0) =0} i 0 (552=,1), ae ().

Furthermore, for every v € (0,1 + ), a € (0,1) and ¢ € [L*(0,1),D ]1%& we have
1911501y < 9llz201)p.) , andin the casey & {3, 2} the inequality is in fact the equality.
TFa

[

We note that %Da is sectorial, hence in particular it is closed. Thus, [0, Proposition C.4]
allows us to pass with %DO‘ under the integral sign. Hence, by Proposition for every
0 <~v <1+ awe have

9 9
o) <o
O w1107 [12(0,1).Da] o
a (6% a (6% €
2 DT (t)ug +/ 2 DoT(t —7) £ () ar
o [L2(0.1).Pa] y_ Oz

[L2(071)7,D01]i
I+a

t
<ct ! [0l 20,1y + C/o (t—7) ™= 175G )ip, dr

B T -
<ct et lvoll 20,1y + et~ Tia ”faHC([O,T];Da) '

In view of (3.1), we obtained that 9*vi € L2 (0,75 H7(0,1)) for every 0 < v < 1+ a.
Since 0“v¢ € C((0,T1]; L*(0,1)), applying the interpolation estimate ([I9, Corollary 1.2.7])
we obtain that for every 0 < t, 7 <T,0<y<m <14+«

10705 () — aO‘va(' T a0
(v, 1) 10705 (-, 1) = %z (-, 7 )IILz y 0%z (- 8) = 0%i (s 7 )llmlm

The last norm is bounded on every compact interval contained in (0,7] while the first

norm on the r.h.s. tends to zero as t — 7. Thus,

0%v: € C((0,7]; H'(0,1)) forevery 0 <y <1+ a. (3.41)
Furthermore, from Corollary and the identity
xOé
°=1%0%: — 0*vi(0 0o (0) ———. 3.42
15 = 17(0%% = 07 0) + 00 o (3.2
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we infer that for every e; € (0,1) there holds
ve € C((0,T); H"*(g1,1)) forevery 0<vy<1+a. (3.43)
Our aim is to pass to the limit with ¢ and obtain a weak solution to (3.38)). At first we

will prove the following result.

Theorem 3.13. Let us consider the problem with vy € L*(0,1), f € L*(0,T; L'(0,1)).

Then, there exists
v e L®0,T;L*(0,1)) N L*(0,T;°H = (0,1)), v, € L*(0,T;(°H =
such that for every w € °H2"(0,1) and every ¥ € C°(0,T) there holds

T
/0 (v, w >(0H (0,1)) xOH 5% (0,1) Vdt

14a 1+o¢

(0,1)))

T r1 4, 14a T r1
_ / / 5%, - 0% wdzVdt + / / - wdzVdt, (3.44)
o Jo o Jo
where I'2* is understood in the sense of extension given by Proposition .

Proof. We multiply (3.39)) by v° and integrate with respect to space. Then, we arrive at
1 19 1
/ vy - vdr — / a—Dava ~vdx = / fe-v°dx for every t € (0,7T).
0 0 0

x
Since v¢ € C((0,T]; D,) we may apply inequality (3.12)) and Lemma [3.3| to obtain that
19
_ « 8 . 154
&vD vidr > cq ||v° || 40y
Hence, we get
oo [P dr e o e < 1 oson 1oy -
We apply the Sobolev and Young mequahtles and then, we integrate with respect to time
to get
1 2 2
S P+ [ oI e dr < 3 ool + @) 1 oo -

(3.45)
Since f¢ — f in L?(0,T; L'(0,1)), the sequence {v°} is bounded in L*>(0,7T; L?(0,1)) and
in L2(0,T; H 5" (0,1)). We will show the estimates for vS. Let w € °H 2" (0,1) and we
choose a sequence wy, € 9C°(0,1), such that wy, — w in °H =" (0,1) . We multiply (3.39)

by w;, and integrate with respect to space

1 19 1
/ vy - wpdr = / — D" - widx +/ 1 widz.
0 0o Ox 0
We recall that v € C([0,T]; D). Since wy, are smooth and wg(1) = 0, we may apply the

inequality (3.14] - to obtain

‘/ v; - widw 0,1) ||wk||0H1+Ta(071) + ||f8”L1(0,1) ||wk||Loo(o,1)-

Since v§ € C'((0,T7]; L*(0,1)) we may pass to the limit with & to get

1
[ wde| < bl e ol
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Taking the supremum over w such that ||w]| a2 o = 1 we get

< b 0% 150+ (@) 1 o

We raise both sides to power two and integrate with respect to time. In consequence, we
obtain that {vf} is bounded in L2(0,T; ("H 2% (0,1))). Now we will pass to the limit. We
fix w € "H 5 (0,1). Then, there exists a sequence {w;} C °C*(0,1) such that wy — w
in OF/ 3 (0,1). We multiply by w;, and we integrate it with respect to space. Then,
we multiply the identity by ¥ € C§°(0,7") and integrate with respect to time

T T 9 T 1
[ [ i wdowar = [*[* S poor wpdowdt + [ [ f - wpdwat
o Jo o Jo Ox o Jo

Since wy are smooth and wy(1) = 0, we may apply identity (3.15) to obtain
19 a Lia
/ —D% wkd:c—/ D07 92 wyda.
o Ox

1950025 .00 =

By Proposition [2.32] the operator 8,2 is linear and bounded from °H 5" (0,1) to L2(0,1).

Hence, passing to the limit with k& we obtain

1+a 14a T 1
/ / o - wdzWdt = / / D 0 wdaUdi + / / f° - wda v,
0 0

We will proceed with each term separately. Since f¢ — f in L*(0,T; L'(0,1)) we get

T 1 T 1
/ / £ wdaUdt — / / - wdzVdt.
0 0 0 0

Applying the weak-compactness argument we obtain that there exists
x € L0, T; ("H5*(0,1))") such that on the subsequence

o = x € L2075 (CH ' (0,1)).
Hence,
T T
/0 /0 vy - wdxWdt — /0 <X,w>(OH1+Ta(O71))lXOH1+Ta(O71) Wdt.
On the other hand, we have

T A T 1 T
/ / v - wdrWdt = —/ / v° - wdzV'dt — / / v - wdr¥'dt.
0 Jo 0 Jo o Jo

Hence, x is a weak derivative of v and we have

T T
/0 /Ovt-wdxllfdt%/o /0 <Ut’w>(0H1+Ta(o,1))/x0H1+Ta(o,1)\det’

where the time derivative is understood in a weak sense. Now we will pass to the limit
in the last term. Applying estimate (3.45)) together with Lemma we obtain that the

sequence D5 v¢ is bounded in L2(0,T; L*(0,1)) and hence, on a subsequence

T 1 l+a 1+a 1+a
/ / D=2 .02 wdm@dt—)/ / ® - 0_? wdxWVdt,
0o Jo

where ® € L2(0,T; L2(0,1)). We are going to characterize this limit. Since D™ vf =
1202 and v& — v, in L2(0,T; H*= (0,1)) we can write

1ta 14a
/ /DT’UE- 0% wdzUdt — / / 170 wdeUdt
0 0
T l—a lta
—>/ <vx,l_2 0_? w> ot e Wdt
0 H™Z (01)xH Z (0,1)
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1+a
_// S, 0% wdrWdt,

where I3 denotes an extension of fractional integral on a dual space given by Proposi-
tion m This way we obtained (| and the proof is finished. m

Motivated by the problem ({3.35)) we would like to investigate how we can increase the
regularity of the solutions to (3.38)) if the source term has better regularity away from left

endpoint of the interval. We formulate the result in the next theorem.

Theorem 3.14. If vy € H'(0,1), f € L2(0,T; L'(0,1)) N L2(0, T; H =" (e1,1)) for fized
e1 € (0,1), then weak solution to , obtained in Theorem satisfies additionally
for every 6 € (e1,1)

1+a

2%(6,1)), v € L2((0,T); H 2" (5,1)).

Moreover, for every e; < 61 <6 <1, w € L*(5,1) and every ¥ € C5°(0,T), there holds

T 41 T /1
/ / v - wdxWdt = / / f-wdzWdt
o Js 0o Js

T rl a 1 a
7[1—01 s _ \-a \I]
+/0 /5 [ax o1 (e F(l _ Oé) O <($ ) 7Ux> (0 51)><H (0 61)]1,Ud$ dt,
where, 19 f(z) := ﬁ [¥(z — p)P~Lf(p)dp

Proof. We choose a sequence f¢ € C*([0,T]; D,), such that f¢ — f in L*(0,T;L'(0,1))
and f¢ — f in L?(0,T; HkTa(gl, 1)). Let us briefly justify that such sequence exists.
As it was shown at the beginning of section 3.2.4 we may choose a sequence {fi} C
CH([0,T;C5°(0,¢1)]) such that ff — f in L*(0,T;L'(0,£1)) and a sequence {f5} C
CH([0,T;C(e1,1)]) such that f5 — f in L2(0,T; H =" (e1,1)), where we used the fact
that 15¢ < 1. Then the sequence {f*} = f§ on [0, 7] x [0,1] and f = f5 on [0,T] x [e1, 1]
fulfills the assumptions.

We denote by v® the solution to given by analytlc semigroup generated by 2 5. D%
We note that a sequence v° satisfies the estimate b)) and on the subsequence it converges
weakly* in L>(0,7; L*(0,1)) and weakly in L2(O T: H5%(0,1)) to a weak solution v to
obtained in Theorem m We fix 1 < § < 1. Let n > 0 be an arbitrary smooth
function such that n =0 on [0, (g7 +0)/2], n =1 on [§, 1]. At first we will show that

0 Ge D = 5D ) = s [ =) 0o = ) ) — ().

ve L®((0,T); H(5,1)), v, € L*((0,T); H

(3.46)
Indeed, applying identity (3.1)) and Proposition we arrive at
0 a x
— D%F = e Ao . _ / _ ) a—1 _ € d
gDtV = 0% = 0%(vg ) T —a) Jo (z —p)~* (n(z) — n(p))vz(p)dp

«

=0 e = )~ gy [ P )~ ae) )
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Applying again identity (3.1)) we arrive at (3.46)). We multiply (3.39) by (v°n).. - n and
integrate it over (0,1). We note that by (3.43) we have (v°n),.(-,t) € L*(0,1) for all
€ (0,7). We obtain

1 1
/ vin - (V°N) gedr — / —Da - (V) peda :/0 fen - (v°n)pde.
Integrating by parts the first component, applying v5(1,¢) = 0 and making use of the
identity (|3.46 - we get
2dt/ |(v°n),|? dx+/ —Davn (V°N) gudr = — / fen- vnmdzﬁ—/ (x,t)-(v°N) pedex,
(3.47)

where
«

G i= G+ Gy i= == [ (a—p) " (nx) = n(p))vi(p)dp + 0°Cr - v°).
I'(l—a)Jo
By (3.41) we obtain that 2 D%*(-,t) € AC[0,1] for ¢ > 0. Hence, using (v°n),(0,¢) = 0,
Proposition and estimate (2.19)) we get
19 1
/E%D%fm~@%hﬂx=/le%%%fmmM

_/ D*(v°n), - 07D (v°n)dx > cq || D*(v°N), H 5% 0

Applying Proposition - 2.32| together with Proposition m and the fact that (v°n), vanishes

at zero we may write

De Da+1 e - 8a+1 2
1D W n)ally 5o ) = €a|DF W ) = ca |05 W,y -
Finally, using Proposmon 2.32| we obtain the estimate
[ 30wy e > e )l e (3.48)
We note that
[ 60 @ nade] < Nl gt o GOl -

Using Remark 2.2] and Young inequality we obtain
1
[ Clt) - n)uada] < (o) 0l g o 1GCD 15

< g\l(v Mellgyegr gy T @ NGE AN 150

where ¢, denotes a constant from estimate (3.48]) and by c¢(a)) we denote a generic constant

dependent on a. Now we will estimate the H 2" - norm of G. Since (1'v°)(0) = 0, we have

(63 « g Lta €
[0 (o) 5o gy = 1D 00 1m < @) [ D 2<n%)>L%OU () vl e
where we applied Proposition [2.30 and Proposition [2.32] Thus,
Gl 15 ) < o) 47l g (3.9

In order to estimate the H 2* - norm of (1, it is enough to estimate the L2 norm of

03" (1 and apply Proposition . We note that
o+ 1 1-a o+ 1 l1—a T Ca— c
P(%5=) 0% 6w =1 (“5=) 0% [ - p) = @) — )i )y

66




3.4. CASE WITH LESS REGULAR SOURCE TERM

B 6(1 /ox(x -n)F /Op@ — )" n(p) — n(r)i(r)drdp

B P L T o Ndode — 4 P T W@ =T)
_aa:/o x()/T( p) 2 (p—7)"" " (n(p) —n(r))dpd {dp:(m_ﬂdw }

- 861; /Off V() — 1) /01(1 - w)‘%lw*al(n(r +w(z — 7)) — n(r))dwdr.

w
Using the fact that v; is bounded with respect to space for each positive time and the

estimate
In(r+w(@—7)) = n(7)| < [nllwreeq wlz —7) for every w € (0,1), 0 <7 <z <1,
it is not difficult to show that we may differentiate under the integral. Furthermore,

denoting by B(-,-) the Beta function we may estimate as follows

a1

Vi (r) (@ — )" /0 (1- >zlwa;<n<f+w<m—7>>—n<f>>dm
< nllyr.oe o1y B(L =, (@ +1)/2) 3

—0QasT—zx.

()@ =)'
Thus, proceeding with differentiation, we have

r(o‘;l)a“f(;l(m):/Oxv;(T)(x—T) */ (1 — w) P w2 (r +w(z — 7))dwdr

Ca+1 /Ox () — 1) /01(1 _ w)Tw—al(n(T +w(z — 7)) — n(7))dwdr.

2 w
Thus,
a 1 o—
||G1H H/ (x —7) o / (1-— w)le_an/(T + w(x — 7))dwdr
(01 0 £2(0,1)
T atl 1 o _ _
+c(a) / vi(T)(x —7)" o / (1— )Jw_a (n(7 + w(z — 7)) n(T))dwdT
0 0 w(xr — ) L2(0,1)
c(a) P 15 g < (@) Wlhncciony Wl ozt g, o (3:50)

where in the last inequality we applied Proposition [2.35] We note that we could skip the
absolute value in the last term. Indeed, let us denote by (-,-) the duality pairing between
the spaces Hz (0,1), H 2" (0,1). Since v is continuous with respect to space for any

positive time, we may write

1
il oy = s Al = s | [Tl wds
weH "2 (0,1),||lw||=1 weH 2% (0,1),ul|=1
1 1
< sup ‘/ Ufc "W - X{xe(o,l)mg>o}d$‘+ SUP ‘ —U;i Cw - X{ze(o,l):v;<0}d$
weH 2% (0,1), w|=1 weH 2% (0,1), |w|[=1
1 1
< sup ve - wdm’ sup —vs - wdx| = 2 ||vx|| 251 01)
0
weH 2 (0,1),w] =1 weH 7 (0,1),fw] =1

where we denoted by x the characteristic function. Thus, (3.50) is justified. Combining

(3-49) and (3.50) we obtain

IGI 252 . < closm) [0 (3.51)

ERCN
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By Schwarz inequality, Remark [2.2) and Young inequality we may also write

[ @neada] < Nl o 17 150
< SNl gt )+ @) 1] 25 (3.52)
- 8 NH™2(0,1) HZ (0,1) '
Using estimates 3.51) and (3.52) in (3.47)) we obtain
& [l o+ S el e < @) o e+l 1o e

Applying the estimate ( and recalhng that f¢ — f in LQ(O, T; L'(0,1)) we obtain for
every t € (0,7

/\vn |dw+2/uvn<>u a g d

< c(a,n) ||U0||H1(0,1) + c(@) ||f€77||L2 0.:H 2 (0.1) + c(a, ) ||fHL2((0,t);L1(0,1)) :

If we recall that f¢ — f in L?(0,T; HlfTa(gl, 1)),n=0on [0,(e; +6)/2] and n = 1 on
[0,1] for 0 < g1 < 6, we get

[OR[ (0.T;H(5,1)) || ||L2(07T;HQT+1(6,1))

2 2 2

< e(a,6,21) (ool Fnony + 171 i oy + I W 0imni0m) (3.53)
We obtain that {v°} is bounded uniformly with respect to ¢ in L°>°(0,T; H'(4,1)) and {v}
is bounded uniformly with respect to e in L?*(0, T} HQTH(& 1)) for every ¢ € (g1,1). Thus,
on a subsequence

v 2 oin L®(0,T;HY6,1)) and v —wv, in L*(0,T;H*> (5 1))
for every § € (¢1,1). In order to estimate v; we note that for any ¢; < ¢ < 1 and any
smooth function 7 such that n =0 on [0, (e; +0)/2], n =1 on [0, 1] we have

v = 0%vgn + [

and by (3.40)

o%vin = 0% (v°n), + G(t, ) (3.54)

Moreover, since 7(0) = 7/(0) = 0, by Proposition [2.32] and Proposition
ol E H'"‘
0% (v = |p=

(V°1)a (3.55)

N)a HH* 0,1) L2(0,1)

and by Lemma

1+a

|o

O] 2y = @ Nl 150 (3.56)

Thus, combining (3.51)), (3.53)), (3.54)),(3.55)), (3.56)), we arrive at

le' 2
0% ”LQ 0.1 H 2 (5,1)) < ¢, d,e1) (HUOHHl o)t ||fHL2(OTH 7 (e1,1)) + ||fHL2(0,T);L1(0,1))
(3.57)
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for every 0 € (e1,1). Thus, 8v¢ is bounded on L2(0,T; H =" (5,1)) for every & € (e1,1)
and so is vf. It remains to pass to the limit. We fix J, € (£1,1). We multiply (3.39)) by
w € L?(d,,1) and integrate over (d,,1). Then we multiply by ® € C5°(0,7) and integrate

with respect to time.

T 19 T 1
/ O [ v - wdxdt = / O [ —D - wdzdt —|—/ <I>/ fe - wdzxdt.
0 5 0 5. Ox 0 5

Passing to a subsequence we have

T 1 T 1
/ o - wdzdt — / o / v, - wdzdt
0 5* 0 Ox

and . )
/ <1>/ e wdmdt—>/ o f wdzdt.
0 Ox

Moreover, by the identity (3.1) and estimate we obtain that there exists T €
L2(0,T; H="(6,,1)) such that on the subsequence

0 =D — T in L2(0,T; H =" (6., 1)).

ox
Thus, we get that
T 19 T 1
/ o / 9 Doyt wdzdt — / o / T - wdzdt. (3.58)
0 5. Ox 0 5e
Let us characterize this limit. We choose §; € (£1,0,). Then,

9 povstey = 2 (o= pyoui () —oz/gl(x— )L (p)dp.  (3.59)
or = oz 5, p =\D)ap 0 p =\P)ap. .

We will pass to the weak limit with both terms on the r.h.s. separately. Let us begin with
the last term in (3.59)) If we recall that {2} is bounded on L?(0,T; H*z = (0,1)), we may

write
T 1 o1
o] o i
0 « /0
T 1/ 0
/ P <(x__)—ajvi> 1 1
0 5. \Ox H%a(o,él)xHa%(Oﬁﬂ

T /9
— / o <(1’ — -)_O‘,Uz> ) . wdxdt
0 5. \Ox Y5 (0.60) x5

xXH 2 (0,51)

_/ / o )70 1 05T 051) LEEE:

where the last identity follows from the continuity of the duality pairing. In view of this
convergence and identity we obtain that on the subsequence 8% J5 (x — p)~*v5(p)dp
is weakly convergent in L*(0,T; L?(d,,1)).

If we take \IJ € C5° (0., 1) we can write

/ / B /51 r —p) v (p)dp¥dadt = /T(I)/*l Af(x—p)_avi(p)dp\lﬂdxdt.

In particular, passing to another subsequence v — v in L*(0,T; L?(4, 1)) for every § > ¢;.

['(1—a)

wdxzdt

By continuity of fractional integral on L? we obtain that

/@//6 - )~ dp\Ifdxdt—>/ @//6 © — ), (p)dpW'dad.
1 1
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Hence, on the subsequence

a * —Q,,& 42 ’ — -«
ae b @ =Py = - [ - ) v p)dp,
0

where 7 is a weak derivative.
Making use of this result together with (3.59) in (3.58) we obtain that, for every

T 19
/ CID/ — D" - wdzdt
0 5, Ox

T ! 8 11—« 1 8 -
” /0 ® /5 L‘?xj‘” Yt T1—a)or (@ =700 152 s 0,y | 000

which finishes the proof. m

g1 <0 <. <1



Chapter 4

A space-fractional Stefan problem

In this chapter we will present an example of application of Theorem We will solve
a space-fractional Stefan problem derived in section [2.4] The results of this chapter, apart
from the final section, come from [2§].

Our aim is to prove the following theorem.

Theorem 4.1. Let b,T > 0 and o € (0,1). Let us assume that ug € H™(0,b), uf, €
0oH*(0,b), ug(b) =0 and ug > 0, ug Z 0. Further let us assume that there exists M > 0
such that for every x € [0, b]

MT'(2 — «)
uolr) < L2 )
Then, there exists exactly one (u, s) a solution to
u — 2D =0 in{(z,t): 0 <z <s(t),0<t<T}=:Qsr,
u.(0,8) =0, u(t,s(t)) =0 forte (0,7), (4.1)
u(z,0) = ug(x) for 0 <z < s(0) =0, -
S = —(Dou)(s(t),t)  forte(0,T),

such that s € C0,T), for every t € [0,T] there holds 0 < §(t) < M, u € C(Qs71),
ut,%Dau € C(Qs1), D*u € C(Qs1) and for every t € [0,T] u,(-,t) € oH*(0,s(t)).

Moreover, u, € C(Qsr) in the case o € (3,1), while in the case a € (0,3] we have

29
u, € C(Qer \ ({t =0} x[0,])). Purthermore, the boundary conditions (4.1))2 are satisfied
for every t € [0,T]. Finally, there ezists § € (a, 1), such that for every t € (0,T] and

every 0 < € < w < s(t) we have u(-,t) € WQ’ﬁ(s,w).

Remark 4.1. We note that we obtain the continuity of § up to the origin because we
assume high regularity of the initial condition ug. Indeed, since ug, € oH*(0,b) applying
Corollary we obtain that D®uy = I'"%ugy, € oH'(0,b). Hence, we may expect the

continuity of D*u up to the initial time.



CHAPTER 4. A SPACE-FRACTIONAL STEFAN PROBLEM

Our approach follows the standard methods for solving the classical Stefan problem,
presented in [I]. First of all, we focus our attention on the problem considered in a non
cylindrical domain with a given function s. We apply a transformation to the cylindrical
domain and we find a regular solution by means of the abstract evolution operator theory.
Then, we prove the weak extremum principle and the space-fractional version of Hopf
lemma, i.e. (D*u)(s(t),t) <0 ¥Vt e (0,7]. Finally, by the Schauder fixed point theorem,
we are able to obtain existence of a pair (u, s) which is a classical solution to (4.1]). At
last, we prove the monotone dependence upon data in order to obtain the uniqueness of

the solution.

4.1. Solution to (4.1) with a given function s.

At first, we will find a regular solution to (4.1]) assuming that function s is given.

Namely, we will search for a solution to

Up — %Dau =0 in QS,T7
u.(0,8) =0, wu(t,s(t))=0 forte(0,7), (4.2)
u(z,0) = up(x) forO0<z<b

with a given function s : [0,7] — R. We assume that

s € C%0,T], s(0)=b, 3 M >0 such that 0 < §(t) <M ae. on (0,7). (4.3)
It is worth to notice that the final result will be proven by the Schauder fixed point theorem
in C[0,T]. Hence, we do not consider here s € C*[0,T], because this space is not closed in
C[0,T). We will deduce C'[0, T regularity of s at the end of the proof.

We search for a real-valued solution to , hence henceforth we discuss only real-valued

functions.

4.1.1. Transformation to the cylindrical domain

First of all, we will change the coordinates in order to pass to the cylindrical domain.

We apply the standard substitution p = % and we define

v(p,t) == u(s(t)p,t) = u(x,t). (4.4)
We will rewrite the system 1| in terms of v. Firstly, we note that a% = s(t)%, thus

vp(p, t) = aapv(p, t) = aapu(s(t)p, t) = S(t)sxu(s(t)p, t) = s(t)ug(z,t),

v(p,t) = jtu(s(t)p, t) = w(z,t) + ps(t)uy(x, ).

Together we have



4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION 5.

Furthermore, since v,.(r,t) = s(t)u,(s(t)r,t), we may write

I'(1 = a)(0%y)(p,t) = aap/op(p —7) ", (r, t)dr = S(t)aap /Op(p — 1) " u, (s(t)r, t)dr

s(t)yr =w o [sWp W,
N { s(t)dr = dw } N ap/o (= %) us (), )

s(t)p x
— sa(t)aap/o (s(t)p — w) “ug(w, t)dw = SaH(t)@i:/o (x —w) “uy(w, t)dw.
In this way we obtained that
(0%uq) (2, 1) = W(aa%)(ﬁ’ t). (4.5)
Denoting
vo(p) = uo(pb) (4.6)
and renaming p by x we obtain that v satisfies
Vp — T Egvm—su{”)gxl?o‘v—(] for0<zr<1, 0<t<T,
v:(0,8) =0, v(1,t)=0 for 0 <t <T, (4.7)
v(z,0) = vo(x) for 0 <z < 1.

In the next section we will find a unique solution to (4.7)) which will have appropriate

regularity properties.

4.1.2. Solution to transformed problem

We will solve the system (4.7)) by means of the theory of evolution operators. Let
us define the family of operators A(-) : D, C L?(0,1) — L?(0,1) given by the following

formula 0 o 5
s(t 1 N
At) = x8<t) 2 + ST (D) %D . (4.8)

Let us denote ) 5
s(t 1
A(t) =r—=— d Asx(t) = —D“.
1(t) xs(t) or () = 31+0‘( ) Oz
From Theorem [3.5| and assumption (4.3) we may infer that the family Ay(-) satisfies
the assumptions of Theorem [2.15] Indeed, the Theorem [3.5 implies that for every ¢ € [0, T

Ay (t) is sectorial. Moreover, for 0 <t,7 < T, u € D,

1(A2(t) = As(T))ull o) < |stte(t) — st (r ,|

Sl+a(t)sl+a ax L2(0 N
Ca(l+a)M(b+ MT)> co(l+ oz)M(b—l—MT)O‘
— b2(1+a) |t - 7—| ||UCCHOHQ(O71) S b2(1+a) |t - 7—| HUH'Da )

where we applied identity (3.1]), Proposition (2.32)) and the assumption (4.3)). In conse-
quence, we obtain that

t > Ay(t) € C™([0,T); B(Dy, L*(0,1))). (4.9)
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However, since s is not Holder continuous we are not allowed to use directly the results
from Theorem to the family A(-). Hence, we are going to find firstly a mild solution
to the problem (4.7). Then we will show that this mild solution actually satisfies
almost everywhere. Finally, we will further increase the regularity of the solution. Let us
denote by {G(t,0) : 0 < o <t < T} the evolution operator associated with A,(t), given
by Theorem [2.15] For clarity we rewrite here, the general result from Proposition [2.1§ in
our special case. If g € [L?(0,1), Dy]s then for any 0 < o <t < T and every 6 € (0,1)

c
1G(t.o)gllp, < =0y 19022 (0,1), D)5 (4.10)
Moreover, for any 0 < < 6 < 1, we have
c
||G(t7U)9||[L2(0,1),’Da]9 < m ||g||[L2(O,1),Da]5 (4.11)
and for 0 € (0,1), § € (0,1]
c
| A2(t)G (2, U)QH[L2(0,1),DQ]9 < m ||9||[L2(o,1),pa}5 : (4.12)
Finally, for every a € (0,1) and every 0 <o <r <t <T
[A2(t)G (¢, 0)g — Aa(r)G(r,0)g| 1201
(t—r)® 1 1
sc ((r — o)l - (r—o)i-=9 - (t—o)i=d HgH[LQ(O,l),Da}(; : (4.13)

The constant ¢ in estimates above is positive and depends only on «, 6,0,T and b, M from
(4.3]). Moreover, function T+ c(a, 0,6,b, M, T) is increasing.
We would like to find a mild solution to (4.7). For this purpose we rewrite this equation

in the integral form

v(z,t) = G(t,0)vo(x) + /Ot G(t, a)jgngz(:c, o)do. (4.14)

We say that v € C([0,T]; D,,) is a mild solution to (4.7)) if it satisfies (4.14]).

Theorem 4.2. Let us assume that vy € D,. Then, there exists a unique solution to
belonging to C([0,T]; Dy).

Proof. We will prove this result by the Banach fixed point theorem. We define the operator

(Pv)(z,t) = G(t,0)ve(z) + /Ot G(t, U)iEZ;xvx(:ﬁ, o)do. (4.15)

We will show that P : C([0,T]; D,) — C([0,T];Dy). Indeed, let v € C([0,T];D,). Since
vo € D, by Proposition we obtain that G(t,0)vy € C([0,T];D,). Let us pass to the

second term. We will prove that

Ay(t) /OtG(t,a)jEZ;mx(x,a)da € O([0,T); L*(0,1)). (4.16)
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We note that, since v € C([0,7T]; D,), we have v, € C([0,T];0H*(0,1)), hence zv, €
C([0,T);0H*(0,1)). It is worth to notice that v,(1,t) does not have to vanish, thus we

cannot consider zv, as an element of C([0,77;[L?*(0,1), Dy] =) for a > 1. That is way,
a-+1

we proceed as follows. Let us denote 0 = %5 in the case a < % and for o € [%, 1) let us
mean by ¢ an arbitrary number belonging to the interval (0, m) Then, in view of
characterization (3.40) we obtain that

zv, € O([0,T7]; [L*(0,1), Dyals). (4.17)

Let us denote
zv,(x, o). (4.18)

Since for every t € [0, 7T the operator As(t) is sectorial, then in particular it is closed and
by [0, Proposition C.4] we may pass with Ay(¢) under the integral sign. Hence, for any

0 <7 <t<T we may estimate as follows

HAQ(t) /OtG(t,a)f(-,a)da — Ay(7) /0 Glr, o) (-, o)do

L2(0,1)

_ /OtAg(t)G(t,a)f(-,a)da—/OTAQ(T)G(T, o) f(- 0)do <

L2(0,1)

[ 14206(4,0)7 (.0l oy dot [I(A)G(1,0) = Aa(r)G7,0)) £ )20 4 =

We note that for any w € D, using assumption (4.3), identity (3.1]) and Proposition [2.32]

we have

¢ c
HAQ(t)w”LQ(O,l) < pita HaawaH(o,l) < blﬁ ”waoHa(o,l) < bl% [wllp, -

Hence, making use of (4.10) and (4.13)) we may estimate J; as follows,
t
A1 < el flimorizzon oy | (=0 do

T (t—71)" 1 1
+c “f||L°°(0,T;[L2(071)7Da]a)/0 (r — 0)1—5 + (r — 0)1—5 B (t — 0)1—5d0

(4.19)

¢ a
< S limonsonpan (2t = 7) + (=77 +7° =)

for any a € (0,1). The expression above tends to zero as 7 — ¢ for any 0 < 7 <t < T,
hence (4.16)) is proven. We note that for any w € D,, since w(1) = 0 we may apply the

Poincaré inequality to obtain

9 2
2 2 2 2 o
“wHDa = ||w||L2(0,1) + ||w$||OHO¢(0,1) < Cwa”OHQ(OJ) < Ca %D w
L2
Hence, we observe that (4.3)) together with (4.16)) leads to
, :
/ G(t,a)sg"?m(m,a)da e C([0,T); D). (4.20)
0 s(o

Thus, we have shown that P : C([0,T]; D) — C([0,T]; Ds).

)
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Now we will show that P is a contraction on C([0,71]; D,) for T} small enough. To
this end we fix v, w € C([0,T1]; Dy). Then, we may estimate using (4.3), (4.10) and (4.17))

M t
HPU — PwHC([O,T1];Da) S . Sul; ) ?\/; HG(t7 U)x[@x - wf](? U)H'Da dU

€(0,
cM ¢ _
< —— sup (t— ‘7)6 v = wal(, ‘7)||[L2(0,1),Da]5 do
t€(0,7y) Y0
cM 51 cMT?
< — su t—o do ||lv, — w, e ——|lv—w P
=7 te(O,%) 0 ( ) | HC([O,Tl],OH o) =" 5 | ||C([0,T1],Da)

Hence, for T} < (ch(SJ)% the operator P is a contraction on C([0,71]; D,). Thus, by the
Banach fixed point theorem, we obtain the existence of a unique solution to on
the interval [0, 77] which belongs to C([0,71]; D, ). In order to extend the solution to the
whole interval [0, 7] we assume that we have already obtained the solution o to (4.14)) on
the interval [0, Ty] for fixed & € N'\ {0}. We will find a unique solution on the interval
[0, Tk11], where Ty 1 > T),. We define the space

Xi(Ti41) = {v € C([0, Tia]; Da) - v = 0 on [0, Th]},

with a norm induced from C([0, Tk11]; D). Then, by definition of ¢ and the same reasoning

as above we obtain that the operator P defined by (4.15) satisfy P : Xg(Tht1) = Xi(Tht1)-
Furthermore, for v!,v? € X.(Ty+1) there holds

. .
HPU1 - P’U2H = / G(t, O’)@I[Ui —02)(-,0)do .
C((0Tk+1):Pa) Tk s(o) C([Tk,Tk+1];Da)
Applying (4.3)) and estimate (4.10) we get
M
HPvl - PU2H < sup —/ G(t,o)x[v: — vi](-,a)‘ do
C([0.Tk+11Pa) ™ te(Ty Thot1) b Jm, o
< M sup /t (t — o) tdo v} — 02
- tG(Tk,Tk+1) Ty r r C([O7Tk+1j|;[L2(071);Da]6)
< %(Tkﬂ — Tk)6 Hvl _ U?H

C([0,Tk+1);Da)

b )

1
Hence, for (T4 — Ty) < (C%)é the operator P is a contraction on Xj(Tk.1) and we
may extend uniquely the solution @ on the interval [0, Tj41]. The length of the interval
[Ty, Ty+1] does not depend on k. Thus, after a finite number of steps we obtain the unique

solution to (4.14) which belongs to C([0,T7]; D,,). O

Lemma 4.3. The mild solution v obtained in Theorem satisfies v € C([0,T]; Ds),
vy € L*(0,T; L*0,1)) and
vy — At)v =0

for almost all t € [0,T] in the sense of L*(0,1).
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4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION 5.

Proof. Using definition (4.18]) we may rewrite (4.14)) as follows
t
v(z,t) = G(t, 0)vo(z) + / G(t,0)f(x,0)do. (4.21)
0
The proof is based on the reasoning carried in the proof of [19, Lemma 6.2.1]. We note

that, since f is not Holder continuous, we can not apply [19, Lemma 6.2.1] directly. We

will show that v which satisfies (4.21]) is differentiable. By Proposition for every
t € [0,T] we have

;G(t, 0)vg = Ay(t)G(t,0)v in L*(0, 1).

We will calculate the difference quotient of the second term on the right hand side of (4.21]).
Let us assume that A > 0, in the case h < 0 the proof is similar. We have

2 [ | G+ b o) fa, 0)do — [ .o f(x,a)da]

t

h/ (t+h,o) G(t,a))f(a:,a)da+lll/tHhG(t—i-h,U)f(x,U)da =1 + 1.

In order to deal with I; we recall that by Definition for every 0 < o <t < T and
every g € L?(0,1) the following limit holds in L?(0,1)

lim ~(G(t + h, o) — G(t,0))g = ()G (E, 7)g.

h—0 h

Making use of (| - we obtain that f € L>(0,T;[L*(0,1),Dals), where § = - for
a € (0, 2) and 0 denotes any fixed number from the interval (0, m) if a € [%, 1).
Further, we note that

1 1 [t+h 9

G+ o) =G| =] [ G o) f(0)do

L2(0,1) t p L2(0,1)
1 ft+h o)1
= h/t A(p)G(p, o) f(-,0)dp > h/ dp“fHLoo(OT[pw 1),Dals)

5-1
<ct—o) ||f||L°°(O,T;[L2(0,1),Da]5) ;

where we applied (4.10) and - Hence, we may apply the Lebesgue dominated
convergence theorem to pass to the limit under the integral sign in /; and we get
t
h/ (t + h,o0) — G(t,0))f(z,0)doc — / Ay ()G (t,0) f(x,0)do.
0

We decompose I as follows

flL /:Jrh G(t+ h,o)f(x,0)do = flL/tHh G(t,o)f(x,0)do

1 [t+h
+E/t (G(t + h,0) — G(t,0))f(x,0)do = Iy + L.

We note that due to the Lebesgue differentiation theorem in Banach spaces (see [4]) we

obtain that I converges to f(x,t) in L?(0,1) for almost all ¢ € (0, 7). For I55 we have

(G(t+ h,t) —
h

ho =+ [ @+ h1) - B, 0) (0o = B[ 6011, 0)io
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CHAPTER 4. A SPACE-FRACTIONAL STEFAN PROBLEM

Thus, using again the Lebesgue differentiation theorem in Banach spaces and the continuity
of G(t,-) in L*(0, 1) we obtain that I5 5 converges to zero in L?(0, 1) for almost all ¢ € (0, T].
Summing up the results we obtain that the following identity holds in L*(0,1) for almost
all t € [0,7]

t
() = AOG( O)uo() + Ax(t) [ Glt,0) (e, 0)dor + (2, 1)
Applying formula (4.21)) and the definitions of f and A, we get that
10 5(t)
v(z,t) = W£D v(x,t) + %xvm(x,t)
for almost all ¢ € [0, 7] in L?(0,1) and we obtain the claim of lemma. O

Our aim is to obtain a solution to (4.2]) regular enough to satisfy the weak extremum
principle. As it will be seen in the final section, our solution v has to fulfill the following:
there exists 5 € (a, 1) such that

for every t € (0,7) and every 0 < ¢ < w < s(t) u(-,t) € WZﬁ(e,w). (4.22)

Thus, we need to increase the space regularity of the transformed problem . The main
difficulty is that, from what we have proved by now, v, € ¢H*(0,1) but v, need not vanish
at the right endpoint of the interval. Hence, we are allowed to consider v, as an element
of the interpolation space [L?(0, 1), Dq4s only for § smaller than m However, in order
to obtain higher regularity, we have to examine the behaviour of As(t)G(t,0)f(x,0) more
carefully. The next lemma establishes the regularity properties of an evolution operator
G(t,0) acting on the elements of H*(0,1) for a > 3. At first we will discuss the case

@ € (3,1). Then, we will present more technical result in the case a € (0, 5.

Lemma 4.4. Let us assume that o € (%, 1) and u, € ¢H*(0,1). We denote by u the

solution to the equation

{Ut:A2<t)U for 0<x<1l, 0<o<t<T, (4.23)

u(z, o) =us(x) for 0<z<lI,
given by the evolution operator generated by the family As(t). Then, for every 0 < v < a,

for every 0 < e < w < 1 there exists a positive constant ¢ = c(a, b, M, T, e,w,7), where
b, M comes from (4.3), such that for every t € (o, T) there holds

_liy
[A2@)u(, )l ey < €t =) ||to | ooy -

N

Proof. We note that since o« > 1 in view of characterization (3.40) we have u, €
[L%(0,1),D,], for every v € (0, 7). Hence, by Theorem [3.6|u € C([o, T]; L%(0,1)) N

2(14a)
C((0, T} D) (1 €' ((0,T); (0, 1)) and by (E10)
()i, < et =) luellzao,pa, - (4.24)
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4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION 5.

We recall that the interpolation constant ¢ depends on the parameters of interpolation
as well as on «,T and b, M from (4.3)). However, here and henceforth we neglect this

dependency in notation and leave it just in the final results. Moreover, we note that the

14w

constant ¢ > 0 may change from line to line. We fix 0 <& <w <1 and we set w, = =5~.

Let us discuss the approximate problem. We choose a sequence {¢*} such that

_ 1
{"} C D, ©" = u, in (HY(0,w,) and ¢* — u, in H7(0,1) for every 7 < 3 (4.25)
Let us justify that such approximate sequence exists. We take a sequence ¢ € ¢C>°(0,1)
such that ¢ — u, in H*(0,1). Then we define p* = b, —11,(1)0x, where g4 is a sequence
of smooth, non-decreasing functions such that supp o, C [1 — %, 1], ox(1) = 1 and |g}| < 2k.
Then, ¢* — u, in ¢H%(0,w,) and ¢* € D,. We will show that ©* — u, in H7(0,1) for
every 7 < 3. We note that since 1, — u, in ¢H*(0,1) we have ¢ (1) — u,(1). Thus, it is
enough to show that g — 0 in H7(0,1) for every 7 < % The convergence in L*(0,1) is

straightforward. Moreover, we may calculate

lor(z) — or(v)|? _ox
/;7/L7 i dydz <2ké/7iz;l & — | dyda

k‘ k,2771
_1—7A

|z — (1 — )|2 Nz = — — — 0 as k — oo.
k (1=7)(1+2(1-%))

Hence, the existence of the sequence in (4.25)) is justified. Recalling the characterization

(3.40)), applying (4.10) and (4.12), we obtain that the solution to

_1
k

uk = Ay(t)ub for 0<zx<l1, 0<o<t<T, (4.26)
uk(z,0) = pF(z) for 0<z <1, '
satisfies for every 0 <4 < 1 < %
[AsO) = a) )]y S et =) g =] (4.27)
Hence, for every 0 <4 < 1 and every t € (o, T]
0 0 _
—D"* — —D in H(0,1). 4.28
Zptt o D i H(0,1) (1.25)
Furthermore, for k£ large enough and every 0 < vy < 71 < l we have
1=
H@@mktwmmngc@—w S o g . - (4.29)

We will prove a uniform bound of the sequence {u*} in more regular spaces locally on
(0,1). To this end, we introduce a smooth nonnegative cut-off function 7 such that n =0
,5]U[w., 1], =1 on [e,w]. Making use of the regularity of the sequence {u*} we
note that we may apply the operator 9% to . Then we multiply the result by 7.

Applying Proposition [2.26| we arrive at

0 5D =~ [ = ) ) = ) D ) + 07D

on [0

=—Exfia)A%x—pY”*muﬂ—n@DélD%ﬁ@mw+%W51@D%ﬁ)—GWWD%ﬁ)
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CHAPTER 4. A SPACE-FRACTIONAL STEFAN PROBLEM

From Remark 2.6 we have

0 S nD* ) a.t) = 0" S0 0 ) ~ =

fe 8 o,k k
= 0% (- 0°u")(x, 1) + 7(2)u”(0,2),
where we denoted
= e ()
= 'l—a) Ox R

We note that since n = 0 near zero function 7 is smooth. In view of identity (3.1]) we

obtain that {u*} satisfy the system of equations

{ (0%u* - )y — Ay (t)(0uF -m) = F* for0<ax <1, 0<o<t<T, (4.30)
(0°uF - m)(-,0) = %" - 1 for 0 <z <1,
where

P i o a0~ ) 5D 0% D)+ 0.0

st (t) | T'(1 —a)lo Ox
Let us show a uniform estimate on the L? - norm of F'*. At first, by the Sobolev embedding
we have

it (0,1) o S CEw) Huk(-,t)HC([O’H) < cofe,w) | As(t)ut (-, 1) o (4.31)

Furthermore, using 1' we may estimate more precisely that for any 0 < v < % <p<1

[uh(0,0)] < c|[ut (-t s <t o) Tre Voo (4.32)
We note that for every z,p € [0, 1], x # p we have
n(x) —n(p)
— 1 <
‘ C—p > H77||W1v°°(0,1) )
hence,
1 v —a— —a
m /0 (x—p)*(n(z) - 77<p))A2(t)uk(p)dp < HWHleoo(o,n I ’Ag(t)uk(x,t)‘ :
Since '~ is bounded on L?(0,1) we obtain that
o * —a-1 k k
Hp(l_a)/o (x —p)™* (n(z) — n(p))Aa(t)u (p)dp‘ o < ofe,w) [Ax(t)ut (1) 12(0,1)°
By Proposition 2.32| we may write
a a, k c ' e,k
31+a Ha "D ) L2(0,1) — 31+a H oH*(0,1) — < 31+a(t) H(nD U ) oH'(0,1)
¢ "ra, k ¢ /ﬁ o, k k(.
= () 6 Doy + stte(t) H(?? T L2(0.1) < elese) A0 0

Combining (4.31]), the last two estimates and (4.29) we obtain that for every 0 <5 < %

|F (1) < e, w)(t = o) T [ug|| g1 - (4.33)

L2(0,1)
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We will show that for every k& € N functions 0%u* - n and F* satisfy the assumptions
of Proposition . By Proposition we have u* € C([o,T]);D,). This, together
with the continuity of function s and estimates above leads to F* € C((o,T]; L?(0,1)) N
LY (o, T;L*(0,1)). Due to Remark (0°u*-n)(x,t) = (DU -n)(x,t) +%uk(0, t)-n(x)
and the last component belongs to C([o, T]; L?(0,1)) N C((o, T]; D,). Thus, it is enough to
show that Du* - n € C([o,T]; L*(0,1)) N C((0,T); D,). At first, since u* € C([o, T|; Da),
we have Du* - € C([o,T); L*(0,1)) (actually it belongs to C([o,T];oH'(0,1))). Let us
show that D*u* - € C((0,T]; D,). We note that for any 0 < 3 <1+ «

0 0
S| < D] gD )
or HP(0.1) H HHB(O,U ox HA(0.1)
Applying estimate (4.12) we obtain that
0 0
‘ —DuF(-,t) < || ==Du (- t) <c(t— 0)71% gok‘ (4.34)
O HB(0,1) dx [L2(0,1),Da]% D
hence, using the fact that n vanishes near zero, we have
0
a—(nDauk) c L2.((o,T); 0H?(0,1)) for every 0 < 8 < a + 1. (4.35)
x
Moreover for every o < 7,t < T
2
[nDt (- 8) =Dt
= nori ) —gpot A [ Lo — Loy
' "2 || or ’ Ox ’ DH(0.1) '

We have already shown that the first norm tends to zero as 7 — t. We apply the

interpolation estimate ([19, Corollary 1.2.7.]) to the second term. Then, we have

| = D))

OHOL(O71)

a 1—-<

0 0 B 0 0
—— (D) (-, 1) = —(nD*u*)(-,7) ——(DuF) (-, t) = —(nD*u")(-,7)
Ox Ox oo (o) 1197 Ox £2(0,1)

for every a < f < 1+ a. We note that, by , for every 0 < 7,t < T the first
norm is bounded while the second tends to zero as 7 — t because u* € C([o,T]; D,).
Hence, Du* - n € C((0,T]; D,). Furthermore, D*uf - n € C((0,T); L*(0,1)). Indeed,
Ay(t)u* € C((o,T); L*(0,1)) and by Ay(t)ut € LS.((0,T); H5(0,1)) for every

loc

B
<c

p € (0, + 1). Thus, applying again interpolation estimate, in particular we obtain that
Ay(t)uk € C((o,T]; H(0,1)) and hence uf € C((o,T]; H'(0,1)) which implies D%l - n €
C((o,T); L*(0,1)). Applying the Sobolev embedding we obtain that u¥(0,t) € C((o,T])
and hence .

f—ay? 4O

belongs to C((o,T]; L*(0,1)). Finally, we may apply Proposition to obtain that
0%u" - n satisfies the integral identity

(0% ) (a,t) = Gt ) (06 ) () + [ "Gt 7V PP (7 dr, (4.36)

O%uy -n = Duf -0+
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where {G(t,7), 0 <7 <t < T} denotes an evolution operator generated by the family
Ay(t). We fix v € (0,1 + «), then

a, k a, k k
(e -n><-»t>\[ma] HGM (el P « [ lawnptes P
and we apply estimate ) to obtain
t
o, k o\ o k- A\ Tis k(.
| -n)(-,wiml)sat o) T o]y e [ =TT [P g, 0

Using the estimate (4.33) we get that for every 0 < 7 < 3 there holds
(@t ), 1)

t 0 a
proy FEE) [ (=) (= o) T dr g0
Applying Remark together with the estimate (4.32)) and (4.25)), we obtain that for
every % < v < 1+ « there holds

[(D% )| 0y < = 0) 5 el pro 0,00y + (8= )5 to v 0 1)

Since 7 is arbitrary number from the interval (5, 1 + «), the estimate above implies the

HY(0,1)

ot — o) T || 9%

following: for every v; < «

0 . _tt
(%D u* ) (-, 1) < c(e,w)(t = o) |uol| oo,y -
HY(0,1)
Recalling that n = 1 on [¢,w] we obtain the uniform estimate
d . _ntl
(5, D" u") (1) < e, w)(t = 0) T ol ragoq) -
H1 (e,w)

Hence, in view of (4.28)) we get that for every ¢ € (o, T

0 0
%Do‘uk — %Dau in H"(e,w).

Furthermore, by weak lower semi-continuity of the norm, we arrive at the estimate: for

every 0 < v < «, for every t € (o,T) there holds

0 _ it
%D U<~, t) H’Yl(e w) S C(t - O’) 1+a HU’UHOHO‘(OJ) )
where ¢ = ¢(a, b, M,e,w, T, 7). This together with (4.3) finishes the proof. ]

Now, we present a more technical result which is necessary to increase the regularity

of solutions in the case 0 < a < %

Lemma 4.5. Let 0 < a < 3. Let us assume that u, € HP (0,1) N H(0,1), where

% <pB<land0<y< % are fixed. We denote by u the solution to the equation

up = As(t)u forO<z <l 0<o<t<T,
(4.37)

u(z,0) = us(x) for0d<az<l,
given by the evolution operator generated by the family Ay(t). Then, for every max{f —
a,f =7} < By < B, for every 0 < ¢ < w < 1, there exists a positive constant ¢ =

cla,b, M, T,e,w,3,51), such that for every t € (o, T] there holds
_ B1—B+a+1
[A2 @) uls )l o ey < et =)™ 350 (Ul o g, 15y + ol v0,1))-
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Proof. We will modify the proof of Lemma [4.4] At first we fix 0 < ¢ <w < 1 and we set

Wy = 1*“ . We choose a sequence {©*} C D, such that

©"(0) =0, ¢ = u, in H(¢/2,w,) and ¢" = u, in H7(0,1). (4.38)

Let us justify that such sequence exists. Let us take a sequence {®*} C C*[¢/2,w,]
such that ®* — u, in H?(¢/2,w,), a sequence {®F} C C°[0,e/2] such that &% — u, in
H7(0,¢/2) and a sequence {®5} C C°[wy, 1] such that ®& — wu, in HY(w,,1). Then let us
define
OF + pkif x € [0,¢/2)
O (z) = P if z € [e/2,w.]
OF + pfif v € (wy, 1],

where the sequences {p¥} and {p}} are defined as follows. {p¥} is a sequence of smooth
functions such that pf = 0 on [0,£ — 1], pi(e/2) = DF(e/2), Lph(e/2) = £CI>’“(5/2)
and Z sph(e/2) = d2+ —®¥(¢/2). Analogously, {p5} is a sequence of smooth functions such
that 7 = 0 on s+ 1,1] and ph(es) = ¢H(e2), Lophi) = - 08(us) and £ ph,) =
%@k(u}*). Since for k large enough there hold ‘CI)k(a/Q)‘ < 2|u,(g/2)| and ‘@k (wi)| <
2 |ug(wy)|, we note that p§ and p5 may be chosen in such a way that there exists ¢ > 0

such that ’d—pll < ck and ’d—pQ‘ < ck. We note that from the construction {p*} C D,.

The convergence of ©* to u, in H?(g/2,w,) is straightforward, while the convergence in
H7(0,1) follows from the fact that p} — 0 in H7(0,&/2) and p§ — 0 in H7(w,, 1). The
two last convergence to zero may be shown as in the proof of Lemma [4.4]

As in the proof of Lemma [4.4] we obtain that the solution to

uf = Ay(t)u” for0<x<1, 0<o<t<T, (4.39)
uk(z,0) = o*(x) for 0 < <1, '
satisfies for every 0 < <7
_ =71
o= 0 0] g < e = 00 =
and for every t € (0, T
0 0
%Da b a—Dau in H(0,1). (4.40)
Moreover, for k large enough and every 0 < 4, < 7 we get
Bt
[As (00 (0| 0y S €= ) Mo s oy (4.41)

We introduce a smooth nonnegative function n = 0 on [0,¢/2| U [w,, 1], n = 1 on [¢,w]. By
regularity of the solutions to approximate problem (4.39)) we note that we may apply the
operator 9” to (4.39). Then we multiply the result by 1. Making use of Proposition m

we may calculate as follows
Oy L S /x(x = )P (0w) — np) o D (p)dp + 07 Dt )
oz I'(1—p) Jo ox Ox '
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Using Proposition together with the fact that (D°u*)(0,¢) = 0 we obtain the following

sequence of identities

QD(){ kE _ aaﬁuk’ _ 8QD17,BDB kE _ DlJrafﬁDﬂ k _ al+ocf,3Dﬁuk’.
ox ox

We apply again Proposition to get

0Dty = Tt [ =) ) — ) D) + DD )
Hence,

0 — v — z
(5D ) = 0O [ o)) () D ()0 D D).

We note that by Definition . identity (2.15)) and Proposition we may write

@BDH'O‘_B(nDﬂuk) 88 - BIB aaa( Dﬁ k) éll—aﬁ(nDﬂu) aaaa( Dﬂ k)

ox Ox
Applying Remark [2.6] we obtain further
9, 9, P 0
B nHl+a—p3 B, ky — 9o B, kY_qga_ = (.. k — o~ B,k k ~
"D (nD7u’) = 0% 5 (n0°u") =0 5 - (n Ti=3)" (0,2)) = 0% 5 (n0"u")+u"(0,£)7,

where 7} := —0% 4~ g ~(n- F(l ﬁﬁ)) is smooth. Summing up the results, if we apply the operator
9” to (4.39) and multiply the obtained identity by 7 we arrive at

(0Puk - )y — Ay(t)(OPuF - m) = FF for0<az <1, 0<o<t<T, (4.49)
(0Puk - n)(-,0) = 0Pp* - for 0 <z <1, .
where
ko1 B N B 9 o o
P = i =)y P ) = ) 5 D )
1 f—a-1 ~ 3

@ TG = 35/ x—p)iT 2(77(1’)—n(p))Dﬁuk(p)deruk(O,t)SHn% =: ;F’“

We will prove a uniform estimate on the L2norm of F*. For a sake of clarity we neglect
in notation the dependance in ¢ of other constants then w,e. At first, we note that as in

the proof of (4.33)), by continuity of fractional integral in L? we obtain

HF{C("t L2(0,1) < ele,w HAZ

L2(o,1) )
To estimate F¥ we note that

o0 ==t = o - [l = 0 ) - () Dy

p=17+w(r—T) }

—g : Puk (1 x:zc— Blp — )2 —n(r T=
= o= | D) [[@=p) = 1) () — () dpd {dp:(m_ﬂdw

_ 9 /x D Dk () (x — 1)~ /01(1 —w) P 2 (1 + w(a — 1)) = n(7))dwdr

9 o a1t (T +w(x — 7)) — (7))
8x//T1—B+oz %D k( Jdp(z —7) /0 : (1 — w)Pw2ta—> dwdr,

where in the third identity we used the fact that D*u*(0,¢) = 0 and Proposition m
Applying the Fubini theorem and the substitution 7 = p + a(z — p) we obtain further

I'g— 1 0
SHa(t)mF(l - 5)ng = m% 0 %Daﬂﬁ(p)(m —p)_ﬁH(iﬂ,p)dp;
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where
Lo a1t +al(z —p) + w(z —p)(1 —a)) —n(p+ alz —p))
H(:p,p):/o (1) L = wlpuriect dwda.
We note that for every a,w,p,x € (0,1), p # = we have
(n(p +alz —p) + uzix_—p;;)( (11_—;;)3) —nlp+a@=p)| _ ey (443)

Hence, denoting by B(-,-) the Beta function we may estimate as follows
1 1
@ =p) " Hw,p)| < [l e =2l [ a1 — @) da [ (1 —w) Pl dw
(4.44)
= |x—p|1_ﬁB(1—a,a—6+1)B(1—B,B—o¢)—>Oasp—>a:.

Having in mind that a%Dauk is bounded with respect to space for any ¢ € (o,7) and
applying estimate (4.43)), it is not difficult to pass with differentiation under the integral sign
by virtue of the Lebesgue dominated convergence theorem. Thus, performing differentiation

we arrive at the following identity

S”“<t>mr<1 —B)T(1— B+a)F}
= /0 %Dauk(pﬂx—p)_/B%H(Qj’p)dp_ﬂ/o (%,Dauk(p)(iﬂ—p)_ﬁx(i’ﬁ)dp‘

We note that
LH@p) = [ a1 [ (1w Pt (pale —p) +wle —p)(1 - a)duda
N /01 gHo=B(] — g)-o-! 01 n'(p+alz—p)+ ué(lw_—tz)ﬁ(;;f_); —n'(p+a(z —p))

Hence, applying (4.43)) to n we obtain

0

This together with estimate (4.44]) leads to
H{(z, p)

r—Pp

dwda.

< CHTIHWZoo(o,U-

0
’aH(x,p)‘—i— < cle,w) forevery 0 <p <z < 1.
T

Finally,

To estimate FY¥ it is enough to apply the Sobolev embedding

£2(0,1) < clew) Huk("t)HC([o,l]) < clew) HAQ(t)uk("t) £2(0,1)

Moreover, similarly as in estimate (4.32) for every 1 <6 < 1+ a we have

FZk('at)

L2(0,1)

< cle,w) | 17 |Aa(t)ut]

L2(0,1) < clew) HAQ(t)uk("t)

£2(0,1)

it (0, 1)

[ (0,8)] < cft — o)1

k
"] o (4.45)

Summing up the estimates for FF, i = 1,2,3 and applying (4.41)) we obtain that
|F(-t)

3
£2(0,1) < 0(6, OJ) (t — a) a1 “uUHH‘Y(O,l) . (4.46)
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We will show that F* and 0°u¥ - i satisfy the assumptions of Proposition . Since u* €
C(|o, T); Da) by continuity of s and estimate above we obtain that F* € L*(o, T; L2(0,1))N
C((o,T); L*(0,1)). Furthermore, 3°u*-n € C([o, T); L*(0,1)). Let us check that d°u* -7 €
C((0,T); D,). Again, since 9°u* - n = DPuk -y + F(ﬁ;_z)uk(O,t) -7, it is enough to check
the regularity of DAu* - 1.

From " € D, and estimate (4.12)) we infer that

As(t)u® € LS. (o, T]; H7(0,1)) for every 0 <y < 1+ a. (4.47)
At first, we will show the following estimate
0
‘nDﬁuk(-,t)H < c(e,w) | =D (-, ) for every t € (0,7]. (4.48)
Do O HB(0,1)

We note that in the following calculations we may replace u®(-,t) with the difference
uk(-,t) — uk(-,7) for any 7,t € (0, T]. Applying Poincaré inequality we have

0 0
*(nDﬁu’“) n—Dﬁuk
O oH*(0,1) O oH(0,1)

With the first term we deal as follows. We apply Proposition together with Proposi-

tion and the fact that Du*(0,t) = 0 to get
n/Dﬁuk ‘aam/DgfaDauk)

HnDﬁuk‘ n' DPut

<
Do —

(4.49)

OHa(Ovl)

<c
oH>(0,1) —

L2(0,1)
o P F ey | ) @) o) D )y

We note that in the last inequality we applied Proposition [2.26 By the continuity of

S n/aaDB—ocDauk

12(0,1) '

fractional integral in L? we obtain that

v _ —a—1/,1 o B,k B, k k
|[@-» () =)D )y, < el [P g ) S el [a] g
Furthermore, from Proposition [2.30] we infer that

0
7 0*DP~* Dk < cle,w) HDﬁDauk < c(g,w) || 5= D*u*
L2(0,1) L2(0,1) Ox 12(0,1)
Hence, we arrive at
0
'DPyF < —Du* 4,
e HOH“(O,I) < clew) ox " 2(0.1) (4.50)

Let us now focus on the last term in (4.49). Applying Proposition [2.30, the fact that
D2u*(0,t) = 0 and Remark [2.7] we obtain the following sequence of identities

EDﬁuk — ﬁDﬁfaDauk — aﬁfaalf(ﬁfa)DﬁfaDa k — aﬁfagDauk.
ox ox ox
Hence, by Proposition [2.20]
0 a—f3 @ _gn(z) —n(p) 0 oy O
7D5 k _ _ B 7Dak B—o 7Dak.
U F(1_(&_5))/0(36 p) —p on u(p)dp + 07 (- D*u”)

(4.51)
In order to estimate the H*-norm of the second term on the r.h.s we apply Proposition [2.32

and Proposition [2.30] in the following way

‘85a( 8QD5’a(n2Dauk)

0 a, k
D) Ox

= <
nax =¢

oH« (071)

L2(0,1)
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4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION 5.

0 0
= ¢||D? (n=D"u") < c|ln=—D*u* (4.52)
O L2(0,1) v 0HP(0,1)
Let us denote
x - 0
Jk E/ _ a—ﬂn(x) 77(17) D% k dn.
(=) EE— (p)dp

We will estimate the norm of J* in the space ¢ H*(0,1). In view of Proposition it is

enough to estimate the L%~ norm of 9*J*. We may calculate as follows

00 =)ot = 2 ) [ =) ) — () o Dy

N k wx_ —a _Ta—ﬁ—l — (T Sa— p:T—f—w(fL’—T)
= 2 " D (r) [ o= ) — ) {dp:(x—T)dw }

ax/ %Da u( 5/ “w P (p(r + w(z — 7)) — n(7))dwdr.

We note that we may differentiate under the integral sign. Indeed,

n(7 4+ w(z — 7)) = n(7)| < [Inllyree oy wlx —7) for every w € (0,1), 0 <7 <2 <1

Hence,

S =) (1= 0w+ ol =) = ()

9 pruk(r)(a —7)

< ”77HW17°°(0,1) B(l-—a,1+a—p) or

—0asT—2x .

Recalling that %Dauk is bounded with respect to space for any positive time, we may

apply the Lebesgue dominated convergence theorem to obtain that

L —a)rtt = [ ;wpau’fm(x —7)* /01(1 —w) " w O (7 + w(x — 7)) dwdr

-8 [ aag;Dau’%)(a: — ) A /01(1 —w) w7 + w(z = 7)) = () dw.

Estimating the L?- norm of expression above we arrive at

0
— D*uF

=7
ox

0
— Duf , (4.53)
Oz £2(0,1)

where we applied boundedness of fractional integral in L?. Combining the last estimate

together with (4.50)) and (4.52) we obtain (4.48)). Applying (4.48) on a difference u*(-,t) —
u* (-, 7) together with interpolation estimate [T9, Corollary 1.2.7.] we obtain that for every
B < v <1+ « there holds

< c(g,w)
L2(0,1)

HJkH He(0,1) CHT]HW“’"(OJ)

HnDﬁ(uk(.7t)—uk(-,r))’DaSc(s,w) ;xDo‘(uk(-,t)—uk(,T)) o
< ee.w) |20 b)) D b))

H(0,1) L2(0,1)
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The second term tends to zero as 7 — ¢ while the first one is bounded for o < 7,t < T
due to (4.47). Hence, we have shown that D°u*f € C((0,T];D,) and thus 9°u* - n €
C((0,T); Dy). It remains to prove d°u¥ -n € C((o, T); L*(0,1)). From Proposition we
infer that

x

Ot m =0t ) — =2 [~ 5 (o) — e (o)
We note that for every 7,t € (0,7T)
[ = ) = )k ) = . 7)) )

and the last expression tends to zero as 7 — ¢ because uf € C((o,T); L*(0,1)). Applying
Proposition we obtain for every 7,t € (o, T)

|07t =) () = 0 ) ()| L) S € ) = )] g
The last term tends to zero as 7 — t for 7,t positive. Indeed, since Ay(t)u* = uf, it
is enough to apply the interpolation estimate together with and the fact that
Ay(t)u* € C([o,T]; L*(0,1)). Hence, we have shown that d°uf - n € C((o,T]; L*(0,1)).
Finally, we are able to apply Proposition to deduce that 0°u* - n satisfies the integral

< c(e,w) [uf (-, t) —uf (-
L2(0,1)

L2(0,1)

identity .
(0°uF - n)(z,t) = G(t,0)(0°" - n) —i—/a G(t,7)F(z,7)dr, (4.54)

where {G(t,7), 0 <7 <t < T} denotes an evolution operator generated by the family
As(t). We fix v € (0,1 + «), then we may write

[@u ). 1) < |Gt o) (07" - n)im] + / IGEDEC e, dr

(L2, Da]

Hence, by estimate 4.11 we have

t
Buk - ) (- _og) e |98 — )" Tta || FR(
[@ D)y, < clt=o) T [0 L2(071)+c/0(t P o
Applying (4.46)) we obtain that
H@B SR [CLl P
ot — o) e |97k tt—T T ( 7'—0)1+a YT ||ug ||
14 77L201 > allE7(0,1) -
We note that by Proposition (2 we have
p g —pn(x) —n(p)
Pk - :—7/ —p) P Bk (p)dp + 0P (F - ).
AN s v E ey | (@—p) pr— @"(p)dp + 9°(¢" - m)
Hence,
B k.
070" 1] gy < &) [ a0, + 10 0y
and by (4.38)
06 10, < o) bl sy + oy

Thus, we get that

|@%d* ) (-, 1)]

0 =
HY(0,1) < c(e,w)[(t—0) Ha(HUUHHB(%,w*)—i_HuUHL2(0,1)>+(t_O-) e HUUHH”V(O,l)]'
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Since « is an arbitrary number from the interval (0, 1 + «), the estimate above implies the

following: for every v; < «

0 vl
%(8ﬁuk-n)(->t) < cle,w)(t — o) 1+Q(HUUHH5(EW* + ol g 0.1))-
H71(0,1)

Applying Remark and the estimate (4.45) we obtain

0 w1
%(D’Buk “n(-51)) < ce,w)(t — o) (luol oz o) + 1uoll gr01)
H71(0,1)

and in view of (4.41]) and (4.50) we have

0
%Dﬁuk ’ 77(7 t) < C(é,u})(t - U) "
H1(0,1)

We will show that this leads to
J _B1-Btatl
gD et ) g ) (450
X HP1(0,1)
for every max{f — o, — 7} < 1 < B and where ¢ = ¢(«a,b, M, T,¢,w, 1, 3). Indeed,

making use of estimates (4.41)), (4.53)) and (4.55)) in identity (4.51) we obtain that for any
max{0,a — 4} < v < « there holds
2Do‘uk)

‘ ox

Hence, for any max{0,a — 5} < v < o we have

0 |

Do) < ee,w)(t — o)
Oz L2(0,1)

Taking 71 = 51 — 8+ «, where max{ — 7, 3 —a} < 1 < 8 and applying Proposition [2.30]

and Proposition we arrive at (4.56)). Estimate (4.56)), together with the weak lower

semi-continuity of the norm finishes the proof. O]

Y1

(“UUHHB cwy T HUUHH"’/(O,I))' (4.55)

2

B1—B+a+l

_mt1
< cle,w)(t — o) (Juoll go s o,y + 1ol 3 0,1))-
H71(0,1)

9" *(n

o DA (HucrHHﬁ(g,w*) + ||uo||Hi(o,1))-

Finally, we are able to improve the space regularity of solutions to (4.7). We decompose

0.1)= (G (ki1 kD \ -

Then, for each o € (0,1) we may choose k € N\ {0} such that a € (&5, 1]. We will
discuss separately the case for each k € N\ {0}. The proof for a € (1,1) requires just one

interval (0,1) as follows

step, however for a € (=, +] we need to repeat the reasoning k times.

k+1° k]

Lemma 4.6. Let us assume that vg € D,, a € (0,1). We choose k € N\ {0} such
that o € (=, %]. Then, for every v € (o, (k + 1)a) the solution to obtained in

k410 k
Theorem [4.3 satisfies

v e L0, T; HEY(0,1)) and 0%, € LES.(0,T; HE~*(0,1)). (4.57)
Furthermore,

v € L% (0,T; HEY(0,1)) and 0%v, € L5 (0, T3 H (0, 1)).

loc loc
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Proof. Let us denote § = —°= in the case « 7& = and for a = 3 by 0 we mean any number
from the interval (0, 5). We apply the operator As(t) to 4.21, where f is defined in ,
and estimate its norm in an interpolation space. Firstly, we consider the case a € (%, 1).
In this case, from Theorem we deduce that f € L>(0,T;,H**%(0,1)). Thus, by
Lemma [4.4] we obtain for any 0 < ¢ <w < 1l and any 0 <0 < §

t t
Asft) | G(t,a)f(-,a)da'H(Ha)e(e’w) < [IA0G 0 0)lysarnie do

c 0—0
< [ G o @7 < 55 Wl

where the constant ¢ > 0 comes from Lemma [£.4] By the regularity of the initial condition

and estimate (4.12]) we have

c

142 ($)G (2, 0)voll sra+arnon) < 75 0llp, -

Thus, in view of formula (4.14]), we get that for every 0 < v < «
As(t)v € L32(0,T: H(0,1)), As(t)v € L (0,T; H},(0,1)),

loc

taking into account , this leads to

v, € Lis(0,T; H.(0,1)), 0%, € L% (0 T;H,..(0,1)).
Applying Lemma [2.34] we obtain that

vp € L32(0,T: HF(0,1)) and v, € L (0, T; HJF(0,1)),

loc loc
which finishes the proof in the case a € (3,1).
In the case a < %, by Theorem , we have f € L(0,T};[L? D,ls). Thus, by (4.12)), we
obtain that for any 6 < ¢

[4:(0) [ G(t.0)1(, 000 < [ 140G (1,00 o, do

Cjﬂ679
< [ e M Do, 4 < S5 Wlimorammon -

[L2(071)7Da}6

This together with the estimate
c
1A2(£)G (2, 0)voll z20,1), 009, < 75 0]l
and formula (4.21)), implies that for every 0 < 6 < §
As(t)v € Lo (0,T5[L%(0,1), Du]g) = Li2,

Hence, in view of (4.3))
0%, € L. (0,T; H(0,1)) for every v € (0, ).

(0,T; HIF9(0,1)).

Applying Corollary [2.33] we obtain that
vz (5 Ol 0,1y < ct”ait |vollp, for every v < 2a. (4.58)
Let us denote d; = . We will discuss firstly the case a € (g, 3]. We note that by (4.58)

||f('7t)||H(1+a)61(0,1) Sctoedt ”UOHDa :
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4.1. SOLUTION TO (4.1) WITH A GIVEN FUNCTION 5.

Applying Lemma [4.5] we obtain for every 0 < ¢ < w < 1 and every 0 < d;
42210, Oll s soniey < 55 ol + [ 143G )70 Ao
< ol + ¢ [ 075 (t = o)1 uoll,
and we arrive at
Ayt € L2 (0,T: HET°(0,1)), As(t)v € L2 (0, T3 HET(0,1)) for every 6 < 6.
Thus,

a+1

(0,1)), 8%v, € L% (0, T; H!

loc

v, € L2(0,T: H)"

loc loc

(0,1)) for every 1 < 2a.
Applying Lemma [2.34] we get that
v, € LS (0,T; H,?

loc loc

(0,1)), v, € L% (0,T; H)?

loc

(0,1)) for every 7o < 3a.

In this way we proved the lemma for o € (%, 1). Let us suppose that a € (3, 1], since

13
f € LQTZI(O,T; H;2(0,1)NH(0,1)) for every 0 < < %, we apply Lemmawith B ="

together with Lemma and we obtain that
0%v, € L2 (0,T; H2(0,1)) and v, € Ly5.(0,T; H,?

loc loc loc loc

(0,1)) for every 3 < 4a.

In general case, we proceed as follows. For a € (k%rl, 1], k > 2 we apply to 1D the
estimate 1’ with 6, = 22, 7 < (n+ Da forn =0,..., 1] — 1. In this way we
obtain that

vy € L (0,75 gHTe=1/21(0, 1)) (4.59)
and

_Mk=1)/2]
1 GO grrr—yen (o1 St et ||UO||’Da‘

Then we apply to 1' Lemma together with Lemma f%} times with g = ~, for

n=[%1],...,k—1 to obtain

0%, € L2(0,T; HY1(0,1)), v, € L32(0, T H)-

loc loc loc

(0.1)), vo € L% (0,T: H (0, 1)),
which finishes the proof. m

In Theorem we have obtained the solution to (4.7) belonging to C([0,7]; D,). By
Lemma [4.6] we may deduce local continuity of the solution with values in more regular

spaces. We establish this result in the following corollary.

Corollary 4.7. Let us assume that vg € D,. Let v be a solution to given by
Theorem . Let a € (0,1), we choose k € N\ {0} such that a € (k%rl, %] Then, for every
a <y, < (k+1)a there holds

v e C(0,T); H%(0,1)) and 8*v, € C((0,T); H%*(0,1)). (4.60)

loc loc

Furthermore,

vy € C((0,T]: 4C[0,1]) for a € (0, ;] and v, € C((0,T]:oC[0,1]) for a € (;, ). (4.61)
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Proof. Theorem [4.2|states that v € C([0,T]; D,,). Since for arbitrary 0 < ¢ < w < 1 and
for every a < 75 < v, < (k + 1)« there holds
H%—H(& w) = [HH—a(Ev w)7 HW'H(g’ w)]@?
T~
we may estimate by the interpolation theorem ([19, Corollary 1.2.7])

_dk=o Fg—
[o(- 1) = o( Tl ey < cllvl8) = ol m)llp,™ ™ ol 8) = v T

where ¢ = ¢(yk, 7k, €). By Lemma [4.6] the second norm on the right hand side above is
bounded on every compact interval contained in (0, 7], while the first tends to zero as
T —t for t,7 € [0,T].

In order to obtain the claim for 0%v, we recall that by Theorem we have 0%v, €
C([0,T); L*(0,1)). Applying again the interpolation theorem we obtain for every 0 < & <
w<l,0<7<t<Tandevery a <7 < v < (k+ 1)«

”8avz<'7 t) - aavx(.’ T) HHW*O‘(&W)

Vg~ Ve~

-2 —
< C('Yk,%, Ot) Haavx('?t) - aavz('vT)”LQ(zfl) ||a viﬁ('?ﬂ - aav$<_77_)||“/k

H'%E~%(ew) *

The first norm tends to zero as 7 — t, while the second one is bounded on every compact
interval contained in (0,7 due to Lemma . This way we proved . The continuity
of v, in the case a € (3,1) follows by the Sobolev embedding from v € C([0,7],D,). In
the case a € (0, 1] we recall that v, € C([0,T]; L*(0,1)) and by there exists v > 3
such that v, € L2 (0,T;0H7(0,1)). Hence, applying again an interpolation argument

together with Sobolev embedding, we arrive at (4.61)). O

Corollary 4.8. Let us assume that vg € D,. Let v be a solution to given by
Theorem [§.3. Then, for every o € (0,1) there exists 3 € (a,1) such that for every
0<e<w<1 there holds v € C((0,T]; Wzﬁ(s,w)).

Proof. In the case o € (0, %) it is enough to notice that in view of Corollary |4.7| we have
v e C((0,T); H?*(e,w)) for every 0 < & < w < 1. In the case a € [3,1) the claim follows
from Corollary [4.7] by the Sobolev embedding. O

4.1.3. The existence and regularity of solutions to (4.2

At last, we are ready to formulate and prove the result concerning a unique existence and
regularity of solution to (4.2)).

92
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Theorem 4.9. Let b,T > 0 and o € (0,1). Let us assume that s satisfies . We
further assume, that ug € H'T*(0,b), uf € ¢H*(0,b) and uo(b) = 0. Then, there exists a
unique solution u to such that u, Du € C(Qs71), Uy, a%Dau € C(Qs ) and for every
t€[0,T] uy(-,t) € oH*(0,5(t)). Moreover, in the case o € (3,1) u, € C(Qs 1), while in
the case a € (0, 3] uy € C(Qsr \ ({t =0} % [0,0])). Furthermore, the boundary conditions
2 are satisfied for every t € (0,T). Finally, there exists 5 € (c,1) such that for every
t € (0,T] and every 0 < e < w < s(t) we have u(-,t) € W2’ﬁ(6,w).

Proof. Firstly we will establish the results concerning the existence and regularity of
solution to and then, we will rewrite the results in terms of properties of solution to
. We note that, under assumptions concerning regularity and traces of ug we obtain
that vy defined in belongs to D,. Hence, there exists v a unique solution to (4.7))
with the regularity given by Theorem [£.2] Lemma [4.3, Lemma and Corollary [£.7]
Since v € C([0,T]; D,), by the Sobolev embedding we obtain that v € C([0,7] x [0, 1]).
Furthermore, from Corollary we know that there exists § € (a,1) such that v €
C((0, T]'Wzﬁ(&? w)) for every 0 < e <w < 1.

We define the function u on Qs by the formula u(zx,t) = U<T t). Since v € C([0,T] x
[0,1]), we obtain that u € C(Q,r) and v € C((0,T]; W>1= 2, 5(e,w)) implies u(-,t) €
WZﬁ(s,w) for every t € (0,7] and every 0 < ¢ < w < s(t). We note that v,(p,t)
s(t)u,(z,t). Hence, from (4.61) we obtain that u, € C(Qsr) in the case a € (3,1), for
a € (0, 3] we get u, € C(Qsr \ ({t =0} x [0,b])) and for o € (0,1) we have u,(0,t) =0
for every t € (0,7]. Furthermore,

0 1 9 oz
u(w,t) = %D u(z,t) = sl+“(t)67pD v(p,t) where p = RO

From Corollary and the Sobolev embedding we may deduce that 0%v, = E%Dav €
C((0,T] x (0,1)), which implies D, u; € C(Qsr). Finally, v € C([0,T]; D,) implies
that u(t,s(t)) = 0 and wu,(-,t) € ¢H*(0,s(t)) for every t € [0,7]. Hence, by and
Proposition we obtain that for every ¢ € [0, 7] there holds D%u(-,t) € ¢H'(0,s(t)) C
AC0, s(t)]. Moreover, from the Sobolev embedding we infer that D € C([0,T] x [0, 1])
and since D%u(z,t) = v(p,t) we obtain that D*u € C(Qs7). The uniqueness

1
5 ()
of solution follows from the energy estimate. If we assume that u with the regularity

described above satisfies (4.2]) with ug = 0, then multiplying (4.2)); by v and integrating

over (s we arrive at

T rs(r) s(t) O
/ / w(z, 7) - u(z, 7)dzdr —/ / —DO‘ ,7) - u(z, 7)dxdr = 0.
o Jo

Applying the estimate we get
1 T rs(t) d 9 T
5/0 /0 5 @)l dmd7‘+ca/0 e )|| N 0
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By the Fubini theorem we obtain that

1 rs(T) 9 T 9
5/0 lu(z, T)| d:t+ca/0 e P2 g0 3y O <O

and hence u = 0, which finishes the proof. O

4.2. A solution to Stefan problem

Before we prove the existence and uniqueness of the solution to Stefan problem, we

need to derive the weak extremum principle for the system (4.2)).

4.2.1. Extremum principles

We will begin with the auxiliary lemmas. Firstly, we will present an extended version

of [13, Lemma 1] (see also [I8, Theorem 1]).

Lemma 4.10. Let us assume that f : [0, L] — R is absolutely continuous on [0, L] and
for every e € (0, L) it belongs to Wl’ﬁ(s, L) for some B € (0,1]. Then for any a € (0, )

D*f is continuous on (0, L) and

1. if f attains its local mazimum at the point xo € (0, L], which is a global maximum on
[0, 0], then for every a € (0, 3) there holds the inequality (D* f)(x¢) > 0. Furthermore,
if f is not constant on [0, zo], then (D*f)(xy) > 0.

2. If f attains its local minimum at the point xo € (0, L], which is a global minimum on
[0, 0], then for every a € (0, 3) there holds the inequality (D* f)(x¢) < 0. Furthermore,
if f s not constant on [0, zo), then (D f)(zo) < 0.

Proof. Let us begin with the proof of the continuity of D®f. To this end, we fix a € (0, )
and we take z1,x € (0,L). Let us assume that z; < x. The case x < xr; may be shown

analogously. We note that
L= ) [(D*N)(@) — (D) = | [ =p) s [

z1
0

(1 —p)~“f'(p)dp

< [@-p 1Ol [l —p) = @ = @) dp.

1

The second term tends to zero as x — x; because

1 1
[ @=peroldp = [ - p) 1 o)l dp
as x — x1 by the Lebesgue monotone convergence theorem. The first term also converges

to zero because

x z N B
/ (fK—P)af/(P)dp’ < Hf/HLﬁ( o (/ (x—p)_ﬁdp) —0asz — 2.
T 1,T z1

1
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Thus, the continuity of D*f on (0, L) is proven. Let us assume that f attains its local
maximum at the point z € (0, L], which is a global maximum on [0, zy]. We define the
function g(z) := f(xo) — f(x) for z € [0, L]. We note that g(z) > 0 on [0, 2], g(x¢) =0
and (D%g)(xz) = —(D*f)(z) for x € [0, L]. For every 0 < ¢ < z < xy we may estimate g

as follows
z0
< ' <|ld|l — z]° . .
9@ < [l @ldp < gl =l (462)
Thus, for fixed a € (0, ), applying the integration by parts formula, we get
1 o
Da — / _ -« ./ d
(D%g)(wo) T —a) o (zo —p) "g'(p)dp
1 _ _ x5 %g(0) ! o e
| . « 0 . / o a—1 dn.
F(l _ a) p_lgg(% p) g<p) F(l B Oé) F(]_ N O[) 0 (1’0 p) g(p> p

From the estimate (4.62) we infer that the limit equals zero, hence

(D)) =~ B s [ e (469

Thus (D%g)(zo) < 0, which is equivalent with (D*f)(xy) > 0. Furthermore, from the
formula (4.63)) we obtain that if f is not a constant function on [0, zo] then (D f)(x¢) > 0.
Substituting f by —f we obtain the second part of the claim. m

In the next lemma we will show that E%Da f is non positive in the maximum point
of f in the interior of the interval. This result, under stronger regularity assumptions,
was proven in [22, Lemma 2.2]. Here we present the proof, where we do not demand C?

regularity of f.

Lemma 4.11. Let f : [0,L] — R be an absolutely continuous function such that f' €
Wl’ﬁ(s, L) for every ¢ > 0 and for fixred 5 € (0,1). Then for a € (0,5) a%Daf is

continuous on (0, L) and

1. if f attains its local mazimum at xo € (0, L) which is a global mazimum on [0, x|,
then ((%Daf)(:vo) <0 for every a € (0, 5). Furthermore, if f is not constant on [0, x|,
then (£ D f)(z) < 0.

2. If f attains its local minimum at xo € (0, L) which is a global minimum on [0, xo], then
(%Do‘f)(xo) > 0 for every a € (0,0). Furthermore, if f is not constant on [0, x),
then (LD f)(zg) > 0.

Proof. Let us begin with the proof of continuity of %Da f. To this end, we fix a € (0, )
and we take z1,x € (0,L). Let us assume that x; < z. The case z < x; may be shown

analogously. We note that for every 0 < ¢ < y < L there holds
0 a (¢
P 1 — 7_Da — 7/ — _a d / —« / d
(1= a)(5 - D*)y) 3y Jo (y —p) p+f y—p)"f'(p)dp

——a [y=p) " o)y + /E (y — ) f" (p)dp
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Hence, taking arbitrary € € (0,z1) we obtain that

0 9 <o / -0 = =) )] dp

5 D0 (@) = 5D f(a) ;
1= p) %= (x—=p)" | f"(p)| dp.

'l —«
(1—a) |5 =
The first term tends to zero as ©* — z; because the convergence under the integral is

—l—/ z—p) | f"(p) \dp—l—/ T

uniform. The third term tends to zero because

1
[ @=p e @ldp = [ @) @) dp
3
as r — x1 by the Lebesgue monotone convergence theorem. At last, the second term also

converges to zero because

T T N B
[@=prera| <1, ([@-p ) —0asz
Thus, the continuity of %DO‘ f on (O,L) is proven. We will prove only the part of

the claim concerning maximum, because the proof of the second part of the claim is
analogous. We define g(z) = f(x¢) — f(x). Then g is nonnegative on [0, 2], ¢'(zo) = 0
and %Do‘g = ——Daf We note that for every 0 < ¢ < x < zy we may estimate

// " . B
@< [T Ol <9l =l (4.64)

o) < [Cld@ldp < [ [ 19" @) drdp

o |z —x
o B

Making use of these estimates we may differentiate under the integral sign as follows

and

0’/3—#1
(4.65)

(35200 = 5y (g [ =000 e
- F(ll—a)pli?(% —PY ) - 1“(1(1—04) /0360(950 —p) "' (p)dp.

and the limit is equal to zero by the estimate (4.64). Applying integration by parts we

obtain further

0 «

«

zo
7Da — _7/ _ —a—1_/ dp = ———— i . —a—1
(5,09 (20) Ta—a) b (o —p)™* ¢ (p)dp Ti—a) pg%(xo p)~*9(p)
a —a—1 Oé(Oé + 1) /mo o —a—2
A=) 9(0) T —a) b (xo —p)~* "g(p)dp.
By (4.65]) the limit equals zero, hence we arrive at
0 a o ala+1) [ro o
— D~ - - a—1 7/ o a—2 d
(5, P%9)(w0) T =) 9(0) + Ti—o) b (xo —p)"“ “g(p)dp
and 5 5
(%Dag)(xo) > 0, which implies (£Daf)($0) <0.
Furthermore, from the formula above, we obtain that if f is not a constant function on
[0, o] then (2D f)(z) < 0. O
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Having proven Lemma [4.11] it is not difficult to deduce the weak extremum principle

for parabolic-type problems involving B%DO‘.

Lemma 4.12 (Weak extremum principle). Let s fulfills the assumption . We assume
that u satisfies

Uy — aiDaU =[finQsr
and has the following reqularity u € C(Qs1), u € C(Qs71), u(-,t) € AC|0, s(t)] for every
te(0,7), %Dau € C(Qs1). Furthermore, for everyt € (0,71, for every 0 < ¢ < w < s(t)
we have u(-,t) € WQ’ﬁ(g,w) for some B € (a, 1]. Let us denote the parabolic boundary

of Qur by Ox = 9007 \ ({T} x (0,5(T))). Then,

1. if f <0, then u attains its mazimum on Ol p.

2. If f >0, then u attains its minimum on Oy p.

Proof. The proof follows the standard argument for the linear parabolic equations. Firstly,
we will prove the first part of the lemma. Let us assume that at some point (xg,ty) €
Qs \ Ol we have u(xg, tg) > maxpr, , u =: M. We fix £ > 0 and we denote v(z,t) =
(u(z,t) — M)e " Then v attains its positive maximum in some point (z1,t1) € Qs \ I 1.
We may calculate

v = we < —ev, aaxDo‘v = e’gta—xDo‘u.
Thus

0
vy — %Do‘v = —ev + fe .

In particular

ve(zq,t1) — aaxD%(xl,tl) = —ev(xy, t1) + f(z1,t)e " < 0.
Since (z1,t1) is a maximum point we have vy(x,t;) > 0 and by Lemma we infer that
%D%(azl,tl) < 0. Hence, vy(xy,t1) — %D%(wl,tl) > 0, which leads to a contradiction.

Setting u := —u we obtain the second part of the claim. O]

It is possible to relax the regularity assumptions in the statement above. We will also

make use of the following version of the weak extremum principle.

Proposition 4.13. [12] Let us assume that s fulfills the assumption , u e C(Qs),
u(-,t) € AC0, s(t)] for every t € (0,T), 2D € C(Qsr),us € L=(Qs 1) and for every
t € (0,T), for every 0 < e < w < s(t) we have u(-,t) € WZﬁ(é,w) for some (€ (a, 1].
If u satisfies

Uy — aaxDau =f a.a. in Qsr,

where f <0 a.a. on Qs1, then u attains its maximum on OU'sp. In the case f > 0 a.a.

on Qs 1, u attains its minimum on O .
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Proof. We will consider only the case f < 0, because the case f > 0 is analogous. Let us
assume that at some point (x9,%9) € Qs \ Ol'sr we have u(zg,t9) > maxpr, , u =: M. We
fix e > 0 and we denote v(x,t) = (u(z,t) — M)e . Then v attains its positive maximum

in some point (x1,%1) € Qs \ Os 7. We note that v satisfies

ve(x,t) — (,fxD%(x,t) = —ev+ f(z,t)e " a.e on Qsr.

Since v(xy,t;) > 0 and v is continuous we obtain that there exist § > 0 and a > 0 such
that

ev(x,t) > 26 for every (z,t) € [x1 — a,x1 + a] X [t; — a,ty].

Applying Lemma we obtain that —%D%(xl,tl) > 0. By continuity of %D% in
Qs we infer that there exists b € (0, a) such that for every by, by € (0,b) there holds

—;Q:DOCU Z —0 on [I‘l — b1,£131 + 61] X [tl — bg,tl].

Thus,
0
eV — aﬁDaU > 0 on [ZL‘l — bl,l’l + bl] X [tl — bg,tl].
x
We integrate this inequality on the cube [z — by, z1 + b1] X [t1 — ba, t1] and we arrive at
x1+b1 @ x1+b1
261y < / / D (e, dtda = / v, )+ f (x, et dtdz.
xr1—b1 t1— bg xr1—b1 t1—bo

Recalling that f < 0 a.a. on QST we obtain that

x1+b x1+b
20b1by < ' 1/t B —vy(x, t)dtdx = / o v(x,t; — by) — v(x, ty)dx.
1—02 x

xl—b1 l—bl
We divide the inequality by 2b; to get that
1 x1+b1
dby < T /JC1 . v(x,t; — by) — v(x, t1)dx.
Passing with b; to zero we arrive at

dby < v(z1,t1 — bo) — v(21, 1),

which is a contradiction with the fact that (z,¢;) is a maximum point of v. [

4.2.2. Estimates

In the next two lemmas, we derive the bounds for the Caputo derivative of the solution
to (4.2) and for the solution itself. This is a significant step in the proof of the existence
of solution to (4.1)).

Lemma 4.14. Let us assume that the assumptions of Theorem [{.9 are satisfied and addi-
tionally ug > 0. Let u be a solution to given by Theorem[{.9 then (D%u)(s(t),t) < 0.
Furthermore, if ug #Z 0, then for every t € (0,T] we have (D%u)(s(t),t) < 0.
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Proof. We note that by Theorem [4.9) we have D%u € C(Qs 1), hence D*u(s(t),t) is well
defined and continuous on [0,7]. Furthermore, function u satisfies the assumptions of
Lemma [£.12] Hence, it attains its minimum on the parabolic boundary. In order to show

that the minimum is attained on the curve (s(t),t) we introduce u. = u — ex. Then u,

satisfies
Uet = 5 DU = iy in Qur,
e (0,1) = —¢, u.(s(t),t) = —es(t) fort e (0,T),
us(x,0) = up(z) —ex for 0 <z <b.

From Lemma [4.12| we deduce that u. also attains its minimum on the parabolic boundary.
Since u. ,(0,t) < 0 the minimum cannot be attained on the left boundary. Thus, we obtain

that
us(x,t) > min{ug(z) — ex, —es(t)} > —es(t),

where we used the assumption ug > 0. Hence, u(z,t) = u.(z,t) + ex > —es(t). Passing to
the limit with € we obtain that © > 0. Hence, u attains its minimum, which is equal to zero,
on the curve (s(t),¢). Applying the minimum principle in spatial dimension (Lemma [4.10)),
we obtain that (D%u)(s(t),t) <0 for every ¢ € [0, T].

It remains to show that if uy # 0, then (D%u)(s(t),t) < 0 for every t € (0,7T]. Let us
firstly establish the following lemma.

Lemma 4.15. Let u be a nonnegative solution to u; — %Dau = 0 in Qs7, where s
satisfies . We assume that u has the following reqularity u € C(Qs), us € C(Qs1),
u(-,t) € AC[0,s(t)] for every t € (0,T), 2D € C(Qsr). Furthermore, for every

€ (0,T), for every 0 < e <w < s(t) we have u(-,t) € Wz’ﬁ(e,w) for some [ € (a, 1].
Let ty € (0,T) be fized. Then if u(s(ty),to) = 0, then either (D*u)(s(ty),t0) <0 oru=0

on QS,tO .

Proof. In the proof we will employ the ideas introduced in [I, Appendix 2, Lemma 2.1]. We
note that since  is nonnegative, u attains its minimum in (s(¢o), to). Hence, by Lemma[4.10]
we infer that either (D“u)(s(ty),tp) < 0 or u(z,ty) = 0 for every z € [0, s(to)]. We will
show that the last condition leads to u = 0 on @Q4,. We will proceed by contradiction.
Let us assume that v # 0 on ()s4,. Then, by continuity of v, we may choose 0 < t; < t,
xy € (0,s(t1)) and small 6 > 0, such that u(z, ;) > 0 for every x belonging to [z1, z1 + 24].
We introduce a nonnegative auxiliary function 7 : [0, 21 + 2d] X [t1,%] — R as follows
0 on [0, z1] X [t1, to],
(@, t) = { ge” (52 — (2 — 21 — 6)?  on (1,21 + 28] X [t1, Lo
1 1, %1 15 Lo},

where the constant a > 0 will be chosen later and € > 0 is such that

e[6* — (x — 21 — 6)*)* < u(z,ty) for every x € (w1, 21 + 20).
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Such a choice of € > 0 is possible, if § > 0 is small, due to the continuity of u and the
fact that u(xy,t1) > 0. Since n(xy,t) = n.(x1,t) = 0, it is easy to notice that n satisfies
regularity assumptions of Lemma on [0, 1 + 28] X [t1,tp]. Furthermore, we have

n(0,t) =0, n(zy+ 26,t) =0 for every t € [ty,to). (4.66)

By the assumption concerning ¢ and the fact that u is nonnegative, there holds
n(x,ty) < u(z,ty) for every x € [0, 21 + 24]. (4.67)
Our aim is to apply the weak minimum principle, obtained in Lemma [£.12] to the function

w :=u — 1. To this end, we will show that for suitably chosen a > 0 we have

0
—n + %Do"r] > 0in (0,21 + 29) x (t1, o). (4.68)
At first we note that, by the definition of 1 we have
0
—n + %Dan =0on (0,1’1] X (t17t0].
We note that for x > z; we may write
(L peet) = ot e ) ) = (5 D% ) .)
oz Tl —a)0r Ja Py e\, B =2 Vg Hm A -

In order to calculate %D?ln we note that 7,(xy,t) = 0, thus %D;"ln = Dy n.. Let us
perform the calculations. We have
Ne(z,t) = —4ee 0 [5% — (. — 21y — 6)?|(z — z, — 0)
and
Nea(,1) = —dee™ (52 — 3(z — 21 — §)?).

Thus, we may write

0 4ee~at—t) @ @

D= 3 [ (e p) (p—w — 0 dp— & [ (2 - —ad].

o0 = T —a) {3 xl(w p)*(p— a1 —0)dp s (z —p) “dp
Calculating the last integral we obtain, that for (z,t) € (1,1 4+ 20) X (t1,%o) there holds

0
e+ 2L Doy =
77t+ax Ui

) <a[52 e P(14— n [3 [ (p(;m_l;aa)zdp (- a:1>”p6.

We will show that the last expression is nonnegative for every (x,t) € (z1,x1 +20) X (t1,to)

for suitably chosen a > 0. At first, we note that

1 1
o ;:2_a[3—\/§ sz > 1 for every a € (0,1). (4.70)
Let us introduce 5
20(Kke — 1
oy e D=1 (4.71)
Ra

We will consider three cases.
1. Let z € [z + %5, x1 + 20 — Wy ). Then,
[52 —(r— 21 — 5)2]2 > [52 — (6 — wa’(g)Q]Q and (r — a:l)l_o‘ < (20 — wwg)l_a.
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2 20 —wq s)1 7
Thus, for a > Féé—a) [5(2—(6—5,5)2]2 we have

2 1-a
and the expression (4.69)) is nonnegative.
2. If € (z1, 21 + 56], we may notice that (z — (1 4 0))* > 302 and thus
o 2 g 2 (0 _ o\l
3/9:1 (x —p) *(p— 21 — 6)*dp > 343 /I1 (x —p) %dp = Zlg(mlfl(l,
which ensures that is nonnegative.
3. It remains to deal with the case x € [z1 420 — was, 21 +20). We apply the substitution

p=x1+r(r— xl) to obtain that

3/ x—p) (p—x,—6)%dp = 3/ (1 —7r)"%(r(x —x1) — 0)%dr(z — 1)~
Thus, it is enough to prove that for each = € [z1 + 20 — w5, T1 + 26]
52
11—«

?

3 /01(1 L)z — ) — O)2dr >

which is equivalent with

1 1 252
3/ (1 —7)"*r?%dr(z — x,)* — 65/ (1 —7r)%rdr(x —x1) + . > 0.
0 0 -«
Calculating the above integrals and dividing the inequality by 2 we have
52 I'l—a) I'l—a)
—30(z — 1)) =S +3(z — 3y —5 > 0.
1= P n)paT P ) s a0 2
Multiplying this inequality by F(Q a; we obtain another equivalent inequality
3(x — 1) 3(x — x1)?
6% — § > 0.
o ‘T e—a)B=a) "~

By direct calculations we see that the roots of the function
(O P Gk P S Gt 1

2—« 2—a)3—a)
are given by the formula

2(2 — «)
Thus, it is enough to show that § < J_ for every choice of x € [z1 + 20 — was, 1 + 20].
Recalling the definitions (4.70) and (4.71]), we have

5¥:($—x1)[ V3 1+a

(x — 1) S Iia% — Was
2 - 2
In this way we have shown that (4.69) is nonnegative for x € [z1 + 20 — wa 5, T1 + 20).

0_ = Kqg =J.

Summing up the result, we obtained that (4.69)) is nonnegative for every x € (z1,x; + 20)
and, as a consequence, (4.68) holds.

Let us define w = u — 1. Then, applying (4.66), (4.67)), (4.68)) we obtain that

wt——Daw>O in (0,I1+26) X (thto],
w(0,t) =u(0,t) >0, w(xr;+2d,t) =u(x; +26,t) >0 fort e [ty,to],
w(x,t;) >0 for z € [0, 21 + 20].
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Obviously Lemma [4.12]is true also if we consider a problem in a cylindrical domain, thus we
may apply the minimum principle, to obtain that w attains its minimum on the parabolic
boundary of [0, zy + 2d] X [t1,to]. Thus, w > 0 in [0,z + 2d] X [t1,to]. In particular
u(x,to) > n(x, t) = e 0=[§2 — (z — 2y — 6)%? > 0 for every x € (1,21 + 20).
This is a contradiction with u(z,ty) = 0 on [0, s(tp)]. Thus, we obtained that u = 0
in Qs4,- O
From Lemma we infer that D%u(s(ty),t0) < 0, because otherwise we obtain a
contradiction with uy # 0 and the continuity of u. In this way we proved Lemma [

Lemma 4.16. Let us assume that ug > 0 satisfies the assumptions of Theorem[{.9. We
assume further that there exists M > 0 such that

up(z) < ]\/[Flfoja)(b — ) for every x € [0,0]. (4.72)

Moreover, let s fulfill the assumption , where the constant M comes from . Ifu
s a solution to given by Theorem then there hold the following bounds

(D%u)(s(t),t) > —M for every t € (0,T) (4.73)
and

0 <u(z,t) < MD(2 — a)s* () (s(t) — x) for (v,t) € Qsr. (4.74)

Remark 4.2. We note that in the case o € (%, 1) the assumption is trivial, since

from ug € H7(0,1) follows that ug is Lipschitz continuous.

Proof. In the proof we follow the ideas introduced in [I, Proposition 4.2], where the author
consider the classical Stefan problem. Let us denote by u a solution to (4.2)) given by
Theorem [£.9) We define an auxiliary function v by the formula

v(x,t) = Mos® 1 (t)(s(t) — ),

where My = MT'(2 — «). Then we may calculate

(Do)s0)6) =~ [yt =~ = v

Moreover, making use of (4.72)) we obtain

M,
v(s(t),t) =0, v.(z,t) = —Mys* 1 (t) <0 =u,(0,t), v(z,0)=
We may calculate further

vi(,t) = Moas® 1 (1)5(t) + (1 — o) Mys® () $(t),

0 o My,
a—xD v(x,t) = — T(1=a) x
Together we have 3
v (z, t) %Dav(:r,t)
a—1
= Moas® 1 (#)s(t) + (1 — ) Mys™2(t)5(t) AFI(()T — OE? = —f(x,t) >0
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We define the function w = v — v. Then w satisfies

Wy — %Daw = f in QS,Ta
w,(0,t) >0, w(s(t),t)=0 forte (0,7),
w(xz,0) <0 for 0 < x < s(0).

Since the function s is Lipschitz continuous, we get that w, € L®(Q,r). Thus, we may
apply the weak maximum principle from Proposition to function w in order to
obtain that maxg—w = maxar, , w. Since w,(0,) > 0 maximum cannot be attained
on the left boundary. We note that w(z,0) < 0 and w(s(t),t) = 0, thus w < 0 and we
obtain . Moreover, w needs to admit its maximum on the part of the boundary
(s(t),t), where it is equal to zero. Hence, by Lemma {4.10} we get (D%w)(s(t),t) > 0, thus
(DYu)(s(t),t) > (D*v)(s(t),t) = — M. O

4.2.3. A proof of the final result

Finally, we are ready to prove the Theorem [£.1 At first, we will show the existence of
a solution. The method of the proof relays on the construction of the free boundary s(-)
by the Schauder fixed point theorem. Subsequently we show that the obtained solution is

unique. It will be done by proving the monotone dependence of solutions upon data.

Theorem 4.17. Let b,T > 0 and o € (0,1). Let us assume that ug € H'T(0,b),
uy € 0H*(0,b), up(b) =0 and ug > 0, ug # 0. Further let us assume that there exists
M > 0 such that for every x € |0, b

< MT (2 — «)

up(x) < o (b—x).

Then, there ezists (u,s) a solution to , such that s € CY([0,T)), for every t € [0,T]
there holds 0 < §(t) < M, u € C(Qsr), D € C(Qsr), u, 2D € C(Qs1) and
for every t € [0,T] uy(-,t) € oH*(0,s(t)). Moreover, in the case o € (1,1) we have
u; € C(Qsr), while in the case o € (0,1] we have u, € C(Qsr \ ({t = 0} x [0,0])).
Furthermore, the boundary conditions 2 are satisfied for every t € [0,T]. Finally,
there ezists 5 € (o, 1), such that for every t € (0,T] and every 0 < ¢ < w < s(t) there

holds u(-,t) € W2’ﬁ(6,w).

Proof. We follow the idea introduced in the proof of [I, Theorem 5.1]. We define the set

Y= {seC"0,T], 0<$< M, s(0)=0b}.

103



CHAPTER 4. A SPACE-FRACTIONAL STEFAN PROBLEM

Then for every s € ¥ there exists a unique solution to , given by Theorem We will
show that ¥ is a compact and convex subset of a Banach space C([0,7]) with a maximum
norm. The convexity of ¥ is straightforward. In order to show that ¥ is compact we will
firstly show that it is closed in C([0, 7). Let us denote by {si} the sequence in ¥ which
is convergent in C'([0,7]) to some s. Then s € C([0,7]) and s(0) = b. Moreover, for every
k € N and every 7,t € [0,T] we have

lsi(t) — sp(T)| < M|t —7].
Passing to the limit with & we arrive at
[s(t) = s(T)| < M|t — 7]

and hence s € 3. We note that any sequence in ¥ which is bounded in C([0,T]) is
equicontinuous, thus we may apply Arzela-Ascoli theorem to obtain that X is relatively
compact in C([0,7]). We have already proven that X is closed, hence we obtain that ¥ is
compact in C'([0,T]). For s € ¥ we define the operator

(Ps)(t)=b— [ (Do) (s(r), 7)dr,

0

where u is a solution to (4.2)), corresponding to s, given by Theorem We would like to
apply the Schauder fixed point theorem ([8, Theorem 3, Chapter 9.2.2.]), thus we have

to show that P : X — 3 and that it is continuous in maximum norm. Clearly we have

(Ps)(0) = b and from Lemma and estimate (4.73)) we infer

d o
0 < = (Ps)(t) = —(D°u)(s(t).1) < M.

Hence, P : ¥ — 3.
To prove that P is continuous in maximum norm, we firstly note that integrating the first

equation in (4.2) we obtain

(DYu)(s(1),T) = /OS(T) w(z, 7)dz,

where we made use of the fact that for every fixed t > 0 u,(x,t) is bounded and hence

(D%*u)(0,t) = 0. Thus, we may rewrite the formula for P as follows

_b—// dexdT—b—//ut:chde—/ / Az, 7)drds

b b s(t) b s(t)
= b—/ u(x,t)dx+/ u(:p,O)dm—/ u(z,t)de = b+/ uo(x)dx—/ u(z,t)dz. (4.75)
0 0 b 0 0
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Now, we take arbitrary si, so € X. Let us define s,,;,,(t) = min{s;(t), s2(t)}, Smaz(t) =
max{si(t), s2(t)}. We also define function i = i(t) = 1 if s;a.(t) = s1(t) and i = 2
otherwise. Let u; and uy be two solutions to , given by Theorem corresponding to
s1 and sy respectively. Let us define v(x,t) = uy(z,t) — us(x,t) and v¢(x,t) = v(x,t) + ex.

Then v° satisfies

v — 2D = —Fa(‘f:(;) in {(z,t) : 0 <2 < Spin(t),0 <t < T} =: Qs 7
vE(0,t) = ¢, for t € (0,7,
ve(x,0) = ex in0<x<b.

From Lemma we obtain that v° attains its maximum on the parabolic boundary. We

may estimate

[V (Smin(t), O)] < 1 (Smin(t), D] + [w2(Smin(£), 1)] + ESmin(T) = |wi(Smin(t), )| + €Smin(T)
and since v°(x,0) = ex < e85 (T) and v5(0,t) > 0 we obtain that

max v° < |ui(Smin(t), )| + €Smin(T).

T

Smin»

Let us denote My := MT'(2 — «). Then, applying the estimate (4.74)) from Lemma [4.16]
we get
i (Smin (1), )] < MOS?n;gln(t)(smax(t) — Smin(t)) < Mob*™* m[%x] |s1(7) — s2(7)]| -
T7€(0,t
Hence,

max v = max (v° —ex) < Mob® ! max |s,(7) — 52(7)| + €Smin(T).
T T T€[0,t]

Smin» Smins

Passing with € to zero we obtain

< M a—1 _ .
max v < ob max |s1(7) — s2(7)|

To estimate v from below we proceed similarly. We introduce v.(x,t) = v(z,t) — ex. Then
v, satisfies

Vet — %Davs = ps(glﬁ:(;) in Qsmm,T

0e2(0,t) = —¢, for t € (0,7)

Ve(2,0) = —cx in0<ax<b.

Lemma [4.12| implies that v. attains its minimum on the parabolic boundary. We may

estimate
Us(smin<t)7 t) Z - |uz(5mzn(t)a t)| - 5Smin(T)
and since v.(z,0) = —ex > —€8,(T") and v.,(0,1) < 0 we obtain that

min v: > — |[u;(Smin(t), t)| — €Smin(T) > — Myb*1 m[aox} |s1(7) = s9(7)| — €Smin(T),
T7€|0,t

T

Smin»

thus

min v = min (v, +ex) > —Mob* ! max |s,(7) — 52(7)| — €Smin(T).
T T T€[0,t]

Smin> Smin>
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Passing to the limit with € we arrive at

min v > —Mb* ! max |s1(7) — s2(7)] .-
T TE[Ovt]

Smin>
Combining the estimates for minimal and maximal value of v we obtain

< Myb>1 — )
max (o] < Mob™™ mas [s1() — su(7)

Smin>T

Furthermore, estimate (4.74]) implies that

Smaw(t) Smaac(t)
/ wi(z, t)dr < Mgsa_l(t)/ (Smaz(t) — x)dz < Moba_l(smw(t) — smin(t))2.

max
min (t)

Finally, we may estimate

min (t)

(Ps)(t) — (Ps)(0)] =| [ Y o ) — Ji " o e

Smin(t) Smax (t)
< / lv(x,t)| dx + wi(z,t)dz
0

- Smin (t)

< Spmin(t) max |v] + (Smae(t) — smm(t))2MOba_1

Smin, T

< (b+ MT)Myb** m[a())t(} |s1(7) — sa(7)| + Mob® ! max |s1(7) — 32(7)\2 .
T7€|0,

T€[0,t]

Thus P is continuous and by the Schauder fixed point theorem there exist a fixed point
of P. In this way we have proven that there exists a pair (u, s) that satisfies the system
[.1), where s € ¥ and u is given by Theorem [4.9] We note that $(t) = —D*u(s(t),¢) and
since Du € C(Q.r) we obtain that § € C[0,T]. This finishes the proof. O

In order to show that the obtained solution is unique we will prove the monotone

dependence upon data.

Theorem 4.18. Let (u;, s;) be a solution to given by Theorem corresponding
to b; and v} for i = 1,2. If by < by and u} < ug, then for every t € [0,T] we have
Sl(t) S Sg(t).

Proof. In the proof we apply the ideas introduced in [I]. We divide the proof into two
steps.

1. Let us firstly discuss the case b; < by, uf < ud and ul # u2 on [0, b;]. We will proceed
by contradiction. Let us assume that there exists ¢t € [0, 7] such that s;(f) > s2(t). We
denote tg = inf{t € [0,T] : s1(t) = s2(t)}. Then by virtue of weak minimum principle
(Lemma function v = uy — uy is nonnegative on @, +, and v(s1(tp),to) = 0. Thus,
from Lemma we infer that either v = 0 on Qs, 4 or (D%v)(s(to),t0) < 0. The first

possibility is a contradiction with u} # u2. Hence,
0> (D%)(s(to), to) = (Du2)(s(t0), to) — (Du1)(s(to), to) = s1(to) — s2(to)
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and we obtain the contradiction with the definition of ¢5. Thus, we obtain that if b; < bs,

uy < wud and u} Z u? on [0,by], then s;(t) < sqo(t) for every ¢ € [0,T].

2. In the general case, that is by < by and u} < w3 we proceed as follows. We fix

§ > 0 and denote by u$ a smooth function defined on [0,by + 4] in such a way that
= 0 on [by + 6/2,by + 8], u > uf on [0,by] and max,epp,(ud(z) — ui(z)) = 6,

MAaX, ey, boto/2 Uy(z) < 6. Then, we denote by (us, ss) the solution to (4.1) given by

Theorem corresponding to u$. By the first step of the proof, we have s; < s; and

s9 < 85. On the other hand performing calculations as in (4.75)) we have

t t
o(t) = ba + 0+ [ $5(r)dr = by 6= [ (Dus)(ss(r),7)dr

ss(t)
(x)dx — / us(z, t)dz
0

bo+48
_b2+5+/

and

ba Sz(t)
So(t) = by +/ ud(z)dr — / us(x, t)dz.
0 0

Subtracting these identities we obtain

bo+6 bo Sg(t) S92 (t
ss(t) — sa(t) =0 +/ ud( :L‘)dl‘ — / ud(z)dr — / us(z, t)dz +/
0 0 0

bo 5 S(;(t) SQ(t)
= 5—i—/ u () —ug(z da:—i—/ (x)dx — /() m;(a:,t)d:c—/ [us(z,t) —ug(x, t)|dx.
0 sa(t 0
The last two integrals are positive due to Lemma [4.12| Making use of Huo — UOHLOO 0be) =9
2
we obtain

J
s1(t) < ss(t) < so(t) + 0 + byd + 55 for every t € [0, 7.
Passing to the limit with 0 we obtain that s;(¢) < s5(t) for every ¢ € [0, 7. O

Corollary 4.19. From Theorem applied together with Theorem[{.9 it follows that
the solution (u,s) to problem giwven by Theorem is unique. This finishes the

proof of Theorem [4.1].

4.3. A self-similar solution

In this section we will find a special solution to space-fractional Stefan problem. It
is worth to mention that the self-similar solution to space-fractional Stefan problem was

obtained independently in the recent paper [26]. Let us discuss the following system

—2Du=0 in {(z,t): 0 <z <s(t), 0<t< oo},
uw(0,t) =1, wu(t,s(t)) =0 fort e (0,00), (4.76)
s(t) = —(D*u)(s(t),t) for ¢ € (0, 00),

where we assume that s(0) = 0 and ¢; > 0. We would like to find a scale-invariant solution

to this problem. In order to find the appropriate scaling we introduce

uM(z,t) == XNu(\2, \°t) for a,b,c,\ > 0.
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Let us perform the calculations
wuy (AN, \t) = A0 (2, 1) and ug(Nx, A1) = AT (a, t).
Further we have,

0 g (= a [
I'(1- a)%Dau)‘(x, t)=—- /0 (x —p)"uz(p, t)dp = P /0 (z = p) =X uy (Ap, At)dp.

ox
Applying the substitution A*p = w we obtain
A
(1 — a)0“u)(z,t) = )\Caa/ (z — wA™) U, (w, At)dw
x Jo
= )\“‘Hcg //\ax()\“x —w) Uy (w, \t)dw = )\“(O‘HHC(QD“UJ)()\% M),
oz Jo R Ox ’

Hence, if u satisfies (4.76));, then

ozzACAbugcat)—-ACAMa+”é?1)aukcat)
X

A we arrive at

We are looking for a self-similar solution, so if we suppose that © = u
b=a(la+1) and c=0.

Motivated by the above calculation, we introduce the similarity variable £ = 2t and

we define

F(€) = F(xt™o1) == u(x, 1).

Let us rewrite the equation (4.76)); in terms of function F'. We may calculate as follows

QM%w:—allmaL1F@LUA%w:taLF@) (4.77)
and
a o _ —%g v e nl —%

F(l—a)%D u(z,t) =t aF 8x/0 (x —p) “F'(pt”=+1)dp
O e O T
—%/O (x — wtet1) " F'(w)dw =t +%/o (xt™ o —w) *F'(w)dw

4, 0
= T(1—a)t™! G D) (4.78)

Hence, if u satisfies (4.76))1, recalling the identity (3.1)) we obtain that

1 / o 1/ _
— SO = 9 F() = 0,

We will proceed as follows. At first we will solve the auxiliary problem for function F
with boundary conditions F(0) = ¢;, I'"F’(0) = ¢ on the interval [0, R], where R > 0,
¢y < 0 are arbitrary constants and ¢; comes from (4.76)2. Then, we will propose the
formula for the family {s}r and we will choose the constant c; = c2(R) such that the
pair uf(x,t) = FR<£L‘t_1J+°¢) and s' is a solution to 1, 3 . Then we will choose
R = ¢y > 0 such that F(¢g) = 0, which will guarantee that the pair (u®, s®) satisfies the
whole system (4.76]).
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Lemma 4.20. Let us consider the problem
OF'(§) = =1 F'(€) for 0< €& <R,
F(O) = Cq, IlfaF/(O) = (g,
where ¢; >0, R >0, co < 0 are fized constants and I'"*F'(0) := limg_o ['"*F'(£). Then,
there exists exactly one solution to which belongs to

Xeres = {v € C (0, R]) : €0 € C(0,R]), v(0) = 1, I'™v/(0) = ez}

(4.79)

Furthermore, the solution is given by the formula

00 k k . .
Cs —EeN" T (i + i — 1)
Fé)=c1+ —= |+ T(a+1)E° : , 4.80
©=a+ g [ e e (75 Rastaam) 0
where the series is uniformly convergent on [0, R]. Finally, if we define
w(z,t) = F(xt 1), (4.81)

then u(0,t) = ¢; and u satisfies 1) on{(z,t):0<z< Rta%rl,o <t < oo}

Proof. At first we will rewrite (4.79) in the integral form. Let us assume that F' belonging
to Xge, o, satisfies (4.79). We apply I* to both sides of (4.79);. Since F' € L'(0, R) from
identity (4.79)) we obtain that also 9*F’ € L*(0, R). Hence, we may apply Proposition m

to obtain
Sa—l 1

Fla) a+1
Integrating this identity and applying Proposition [2.22] we arrive at

_ " [ )
F<€)_Cl+r(a+1)62_a+1l I(EF")(8).

F'(§) = e I*(EF)(8). (4.82)

We note that
[ oF 0o =€r©) ~ [ F)p, e 1€F) =R I

Denoting by E the identity operator, we get

«

F(l)=a+ Tla+ 1)02 + o 1]a(—f—§E)F(f)-
The above identity may be written in the following form
F(§) = G(S) + KF(), (4.83)
where
GO =c+ & KF(€) = —I"(I ~€B)F(6).

I'(a+1) a+1

Let us find a solution to (4.83)). Applying the operator K to both sides of (4.83)) we obtain
KF(§) = KG(¢) + K*F(€).

[terating this procedure, we arrive at

F() = }n: K*G(&) + K" F(€) for any n € N. (4.84)
k=0
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We note that if F' belongs to C([0, R]), then K™ F — 0 uniformly on [0, R]. Indeed, making
use of Example [2.1] we may calculate that

I"‘(I 4 §E)§5 — - F(ﬁ + 3) €ﬁ+a+1.

(B+a+2)(B+1)

Hence, we have

1 et (k(a+ 1) + 3)
n < o n — —
|K F(§)| = HFHC([O,R]) (Oz+ 1)" (] (I+£E)) 1 ||F||C([0,R}) (1 +a)”F(n(a+ 1) + 1)
OISk + 357) T(n+1)  pone

— 0.

< 2|[Fll oo, m Rty

=||F
¥ lleqo.m L(n(a+1)+1)
Thus, we may pass to the limit in (4.84]) to obtain that

Ple) = > K*G(E). (4.85)
k=0

We will calculate the sum of the series and we will show that it is uniformly convergent on
[0, R]. At first, we note that for any n € N\ {0} we have (I —{E)"1 = 0, thus
Co >0 1
F(¢)=c +
€ =e D(a+1) ,;) (14 a)k
Furthermore, from Example 2.1 we may infer that

SL(B+1)
(I —€E)EP = — protl
(I =¢E) Ng+a+ 2)5
We will show by induction that for every k € N, k£ > 1 we have
1 15 (i +i — 1)
[a[_Eka:_1+aka =1 .
F(1+a)[ (I =ER)JE (=¢ >§F((a+1)(/~c+1))
For k = 1, applying (4.86|) with § = « we arrive at

[04([ o SE)ga — _6204-1-1

I'(n+ 1+ an)

[1°(1 - €E))*¢.

(4.86)

(4.87)

Q
I'l+ «) I2a+2)
which is equal to for k = 1. Let us assume that for a fixed k£ > 1 identity is
satisfied. Then
1 [1F, (i +i — 1)
['(1+ «) F((a+1)(k+1))
Making use of with = (1 4+ o)k + o we get that

[1°(1 — €B)]FHee = I(1 - €B)[(—€")ken).

! : (=D**[(1+ )k +a
—— [I¥(]I — EE)]Fer = ; 1) - (14-0)k+2a+1
T(1+a)[ (I =eBle ,-:Hl(mﬂ ) F((1+oz)k+2a+2)§
= (_£1+a)k+1£a Hiia+i-1) .
F'((a+1)(k+2))
Hence, by the principle of mathematical induction we obtain (4.87)). From identity (4.87)

follows that function F' defined by (4.85)) is given by the formula

— Co o R ’ iy (i +i—1)
F(g)—cl+m £+ Ta+1)¢ §<Ha> T((a+1)(k+1)]

We will show that the series above is uniformly absolutely convergent. Indeed, let us

denote
RUFekte T8 | (i 40 — 1)

(1+a)f T((a+1)(k+1))

ajp =
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Then, we may calculate
Ar1 Raﬂk(a—i— D+a T((a+Dk+a+1)

ay l+a T((a+1)k+2(a+1))
R T((a+ 1Dk +a+2) R B(a, (o + 1)k + a + 2)
< = —0as k — oco.
a+1T'((a+Dk+a+24+a) a+1 I'(a)

Thus, by the d’Alembert criterion the series in (4.80]) is uniformly absolutely convergent.
Now we will check that F' defined by (4.80) actually satisfies (4.83]). Let us calculate K F'.
We note that

ailza(f —EB)e, =0,
hence
I S C2 @ o —{ite * i‘C: (i +i—1)
KF(¢) = ! (I-€E) [F(QH) £+ Do+ 1)¢ ;(HO‘) p((a1+ D(k+1))

Integrating the series term by term and making use of identity (4.86) we have

5 i - o 52&-1—1
a7+1[ (I —EB)F(&) = T a+ 1021“(2(@ +1))

g(ta)k+2a+1

o0 -1 k
1)62,;1 (1 n a) T((1+a)(k +2))

a €2a+1 N 0o _€1+a k Hle(ia—i—i— 1)
_04+102F(2(a—|—1))+c2€ ,é(ua) T(1+a)(k+1))

9) _cl+a\ F ]?7 i +i—1
m\l+a) I'((14+a)(k+1))
Hence, we verified that function F' given by (4.80|) satisfies (4.83)). Furthermore, the

solution to (4.83)) belongs to Xg, . Indeed, F given by (4.80)) is continuous as a uniform
limit of continuous functions. By identity (4.83]), we obtain that F'(0) = ¢; and

(I'*F")(0) = ¢y + @(Da]a(f —EE)F)(0) = cp + lea((l —E{E)F)(0) = co.

In order to show £72F" € C([0, R]) we differentiate the series in (4.80) term by term.

W [N TR (a0 - 1) o =N T i+ i — 1)
5[6 Z(l—i—a) I'((a+1)(k+1)) =¢ Z(l—i—a) F((a+1)(k+1)+1)
(4.88)

We will show that this series is absolutely convergent uniformly for & € [0, R]. Let us

k
[(1+ )k + ] Hza+z—1

denote

b <R1+°‘>k M (o t+i—1)
I+a) T((a+1)(E+1)+1)
Then, we may calculate
biyr  RY™ [(k+1)(a+1) =T ((a+1)(k+1)+1)

b  14+a T((a+1)(k+2)+1)
R T((a+1)(k+1)+2) R"*B(a,(a+1)(k+1)+2)
ST a TatDE+2)+1) (1+a)l(a) — 0, ask = oo.
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Hence, the series in (4.88)) is uniformly absolutely convergent, which leads to £179F’ €
C([0, R]). Now we will show that F satisfies (4.79)). Since F’ € L'(0, R) we may apply D
to (4.83) to obtain

£

1+«

F (&),

where we made use of Proposition [2.28 and Example The right-hand-side is absolutely

continuous, hence differentiating the identity above we arrive at

0 oo &
SDUF(E) =~ F(O)

The identities (4.77) and (4.78) finish the proof. O

Lemma 4.21. Let F be a solution to the problem given by Lemma |4.20]. Then,
for every R > 0 there holds F' < 0 on (0, R). Furthermore, function u defined by
satisfies ug > 0, u, <0 on {(z,t): 0 <z < Rt=,0<t< 00}

D) = 2t I F(E) -

Proof. We note that, since ¢5 < 0, by (4.80)) we have
F'(§) » —c0 as £—0.

Indeed, the derivative of the series in vanishes as € — 0 and ! — —o0 as
¢ — 0. Hence, F'is decreasing in the neighborhood of zero. We note that F' satisfies the
assumptions of Lemma because by Lemma function F'is absolutely continuous
and F'is smooth away from the origin. Let us assume that F' admits a local minimum at
point § > 0. Then, F'(&)) = 0 and, since F' is not constant, by Lemma we obtain
that (ZD*F)(&) < 0. It leads to a contradiction with (4.79). Thus, F’ < 0. The final
part of the statement follows from the identities . O

In the next lemma we obtain the family (u’, s%) ¢ of solutions to (4.76)); and (4.76))s.

Lemma 4.22. For every c; > 0 and every R > 0 the functions

sB(t) = RtTa, (4.89)
R Ca - o —a e NP TR e+ i — 1)
B ) [ e e S () R na )
(4.90)
where
Gy = — B (4.91)

o (—Rri+a\F [TL, (ia+i-1)
(1+a) [1 + 2k ( Tta ) Tt DFTD) ]
satisfy the equation (4.76)3. Moreover, uf is a solution to (4.76)); with s(t) = s®(t) and
u(0,t) = ¢;.
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Proof. We note that u(z,t) = F(xt_l%a) where F' is the solution to (4.79) with ¢, equal
to ¢o whenever ¢, given by is well defined and negative. It is enough to show that
the denominator in the definition of ¢ is positive. To this end, let us recall the formula for
the function F' given by . Since, by Lemma , for any ¢y < 0 there holds F’ < 0,
we have also D*F < 0. Making use of Example ({2.1)) we obtain that for any c; < 0

RYNITE (i + i — 1)
1+Z<1+a> T((at Dk +1)

DaF( = C

This implies that

Rl+o¢ k_ : i—1
) atimsicy

1
+Z<1+a (e +1)k+1)
Hence, for every R > 0 the constant ¢ given by (4.91)) is well defined and negative. By

Lemma u® fulfills (4.76); with s(t) = s®(t) and u®(0,t) = ¢;. Moreover,
rE IR = (1), )
hence, I'~*F"(0) = & implies (I'~*u/)(0,1) = &t~ 1. Now we will show that (uF, %)z

given by (4.89) - (4.91) satisfy ([4.76)3. Let us calculate Du®(z,t) for u® given by (4.90).
Applying Example we get
DUl (z,t) = Got "o+ 4t ar1 6y Z (

Hence, for s¥ given by (4.89) we have

ta DUl (sR(t), t —02—1—022 (
Making use of the formula (4.91)) we obtam that
« R
— DR (sR(t),t) = t =41 = s"(t
W), 1) = 177 T gy
and hence, the functions s and u defined by (4.89) and (4.90) satisfy (4.76))3 which
finishes the proof. n

) [, (ia+i—1)
T((a+1k+1)

—RWN\TE (i i — 1)
I4a ) T((a+1)k+1)

It remains to choose R > 0 such that the pair (u’, s™) given by Lemma (4.22)) satisfies
uf(sR(t),t) = 0.

Theorem 4.23. For every ¢; > 0 there exists ¢o > 0 such that the pair (u,s) := (u®, s%),
where (u®, s°) come from Lemma with R = cq, satisfies the system . Further-

more,

Vo >0 u(x, ), ulz, ), us(z,-) € C([s(z),00)) (4.92)
YVt >0 u(-,t),u(-,t) € C([0,s(t)]), u(-t) € C((0,s(t)]) (4.93)

and
vVt >0 (,iDo‘u(-,t) e C([0,s(t)]). (4.94)

Finally, uw> 0, uy >0, uy <0 on {(x,t): 0<x<s(t), 0<t<oo}.
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Proof. Let us show that there exists ¢y > 0 such that the pair (u®, sf) given by Lemmam
with R = ¢, satisfies uf(s®(t),t) = 0. For & = xt~ T function uf defined in is
given by

uft(a,t) = F(§) = c1 + &ag(),

3 o (=€ I G+ i — 1)
F(oz—l—l)—i_g ,;(1—1-@) F((a+1)(k+1))

We note that ¢(0) = 0 and since ¢, < 0, from Lemma we infer that g is increasing.
Applying Lemma we obtain that %D“g < 0. Recalling that ¢, is given by 1} we

arrive at

where

9(§) =

Ry(¢)
F(&)=c — .
N e
We would like to find R > 0 such that F'(R) = 0. We note that
Rg(R)
(ar+1)Dg(R)

Since the denominator is positive it is enough to show that there exists a positive zero of

F(R):Cl—

the function
h(R) := c1(a+1)D%g(R) — Rg(R).

We note that since D*g(0) = 1 we have h(0) = ¢;(a+ 1) > 0. On the other hand, since
g is absolutely continuous and ¢(0) = 0, we may write g(R) = I*D%g(R). Applying

%Dag < 0 we may estimate as follows

FDg(R) = s (B0 Dt = SIS [ gyt = O
Hence,
h(R) = e1(1 4+ a)Dg(R) — RI“Dg(R) < e (1 + ) D*g(R) — RDO‘g(R)F(fjrl).

Recalling that D*g > 0 we arrive at h(R) — —oo as R — oo. Hence, since h is
continuous we may apply the Darboux property to deduce that there exist ¢ > 0 such
that h(co) = 0, which implies F(cy) = 0. Moreover, for s(t) = cot™a there holds
u(s(t),t) = u(cotl%a, t) = F(co) = 0. The regularity results and immediately
follows from identities and regularity of F' established in Lemmam To show (}4.94))
we note that since F' satisfies , the continuity of {F(§) implies 2 D*F € C([0, R]).

This together with identity (4.78]) leads to (4.94)). ]

Corollary 4.24. The solution (u,s) obtained in Theorem satisfies the reqularity
assumptions , which were necessary to derive the model.



Chapter 5

A special solution to time-fractional Stefan

problem

In this chapter we will find a special solution to the model derived in Theorem [2.37]
We note that the results presented in this chapter come from [I4]. We will look for a

self-similar solution to the time-fractional Stefan problem in the domain
U={(z,t) e Rx (0,00): 0<z<s(t)}, (5.1)

where (s(t),t) is a free boundary. We impose a constant positive Dirichlet boundary

condition on the left boundary and we assume that s(0) = 0. In this case, the problem

formulated in Theorem takes the following form
1

D¢, = Uyy - (t— 57" i 2
s (x)u(x>t) u (mat) F(l _ a) (t s (x)) mn Ua (5 )
u(s(t),t) =0 for every t >0, (5.3)

u(0,t) =~ for every t >0, (5.4)

1 d | [t
5(t) = “T(a) agrs%) pr Vsl(a)(t — 1) tug(a, 7)dr| for every t >0, (5.5)

where v > 0 is given. We are going to prove the following result.

Theorem 5.1. For any v > 0 there exists a pair (u,s) which satisfies —. Fur-

thermore, the solution is given by

s(t) = et ?, (5.6)
c1 o
uw,t) = [, Hpat™$)Go(p)dp in U, (5.7)
xt 2
where ¢; = ¢1(a,y) > 0 and
1 ‘1 _2 2 —a
G“(y)zl“(l—a)/y (L= *pe)"%dp for 0<y<c, (5.8)
P
H(p,x)=1+/ N(p,y)dy for 0<z<p, (5.9)
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= Mu(p,y) for 0<y<p, (5.10)
n=1
where
p
M;(p,y) / 1—p aps)du for 0<y<p (5.11)
Yy
and
P
M, (p,y) = / M (a,y)My—1(p,a)da for 0 <y <pand n>2. (5.12)
y

For every R > 0 the series converges uniformly on Wr ={(p,y): 0 <y <p < R}.
Functions M, N are positive on {(p,y) : 0 <y < p}, hence u is positive in U.
For every a, A > 0 function u satisfies the scaling property

w(z,t) = u(\z, Na't) (5.13)
and

uz(s(t),t) = 0. (5.14)

Furthermore, for everyt > 0 there holds u(-,t) € W*1(0, s(t)) and u(z,-) € C([s7(z), 00))
for every x > 0. Finally, we have u,(z,-) € L*(s7(x),00) N AC)oe([s7 (), 00)) for every
x>0 and w(-,t) € L(0,s(t)), D& yu(-,t) € L(0,5(t)) for every t > 0. In particular,
the pair (u,s) satisfies the assumptions (A1) - (A3).

Corollary 5.2. If ¢; is a positive constant and

v = / (p)dp,

then (@- define a solution to (E)—(.)

Remark 5.1. If we replace the Dirichlet condition by the Neumann condition
u,(0,t) = =Bt 2, 8>0,
then Theorem [5.1] holds with ¢, = ¢;(a, 8) > 0.

The proof will be divided into a few steps and after a proof of Theorem we will
justify the Remark 5.1l At first we will proceed with formal calculations that will lead
us to an appropriate scaling. We introduce parameters a,b,c, A > 0 and we define the
function

u(z,t) = Nu(Nx, \°t). (5.15)

Our aim is to find a,b,c and the curve (s(t),) such that, if (u, s) is a solution to (5.2),

then v = w.

At first, we perform calculations. We note that w,,(z,t) = A=°A72%u) (A%, A~%) and

F(1—a)Dg yu(z,t) :/St (t—7)"uy (2, 7)dT = ATNP /Stl(m)(t—T)aut (A%, A7Pr)dr
AP tAT?

_ \—¢ b \—a, Ay —a __y—cy\—ba b \N—a, A(y—a
=Ny (A A p)dp = AN A%%JM ) UM\, p)dp

H(z)

116



= AATD(1 = a) DYy yu (A, A7),
Le.
D?fl(Aax)u(/\ax’ /\bx) = /\_C/\_baDg—bs—l(/\ax)u)\(xv t).
Hence, if the pair (u, s) is a solution to (5.2]), then

0= D1 yagyu(A'z, A1) — gy (A2, A1) + (At — 571 (%))~

['(1—a)
—c\ —ba NHa —c\—2a 1 —ba —b_— a —a
="\ b D}\fbsfl(Aam)UA(.x,t) — A 2 uix(a:,t) -+ m)\ b (t - A bS 1()\ x)) .
Thus, if we set ¢ =0 and
2a
b= — 5.16
=3 (5.16)

then we get

0= Df\ibsq()\%)u’\(x, t) —ud (z,t) + (t — As™ (N )™,

['(1—a)
We observe that, if s(t) satisfies

s7Hx) = APsTH(\), (5.17)
then u and u* are the solutions to the same equation. Let us find s which satisfies
(5.17)) with parameters a,b related by (5.16). We have to solve the following equation
s7H(z) = A% s (\%). Function s~! satisfies this identity if it fulfills the functional

. 2 . . o . .

equation g(Ax) = Aag(x). To solve this equation, it is enough to write

g(x) —g(Az) _ g(x)1— %
(1 —A) r 1—)\

and take the limit A — 1. Then we get that ¢ = %%, ie g(x)= cxa. Thus, we obtained

that, if there exists a self-similar solution, then the interface may have a form

s(t) = eyt ? (5.18)
for some positive ¢;. If we denote
_2
co=rc ", (5.19)
then we may write
s (z) = CoTa . (5.20)

Our aim is to find a special solution u to the system , , , with function s
given by . We will proceed as follows. At first, we will rewrite the equations ,
in terms of a new self-similarity variable. Subsequently, we will show that if u is
appropriately regular, self-similar function, then condition implies u,(s(t),t) = 0.
Then, we will solve the auxiliary problem
1

I(l-a)
u(s(t),t) =0, u.(s(t),t)=0 for t>0,

(t—s(z))™™ in U, (5.21)

?*1(:5)“(907 t) = umx(xa t) -
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with s given by (5.18). The next step is to prove that the obtained solution satisfies ([5.5]).
In the final section, we will prove that the solution is positive and that for every v > 0

we may find ¢; > 0 such that obtained solution satisfies Dirichlet boundary condition
u(0,t) = .

5.1. Similarity variable

Let us begin with introducing a similarity variable
£ =taa, (5.22)
We define function f as follows
() = fltz=) = u(x,1). (5.23)
In the next proposition we establish how the expected regularity properties of u

transforms to the properties of f. Furthermore, we rewrite the conditions (5.2)), (5.3)), (5.5))
in terms of f and prove that (5.5 implies vanishing of derivative of f at point cg.

Proposition 5.3. Let us assume that s is given by with any fived ¢; > 0 and u
s a self-similar solution to , , , where the similarity variable is given by
. Suppose that v has following reqularity. For k > 1 and every t > 0 there hold
ug(+,t) € LY0,s(t)), uze(-t) € L' (s(t)/k,s(t)). Then, the function f defined by
satisfies f' € L(co,00) N AC([co, kaco)), f € Cco, kiaco) and for € € (co, ke co) we have

1 ¢ —a ! _ 2\? " 2\? 2 / (5 B CO)ia
M/co(ﬁ—p) f'(p)dp = <a> 1)+ [(a) +a] §&f (5)—m, (5.24)
fleo) =0, (5.25)
2 d [ rb
(5) @ = & | [0- 0] (5.26)
The identity together with reqularity of f implies
. N AR
511\%10(5 — o) f"(§) = (2) T(—a) (5.27)
while from we deduce
f'(co) = 0. (5.28)
Proof. Let us begin with a simple calculation,
w(z,7) = f'(ra~a)a"w, (5.29)
2, 2y 2y
ug(z,t) = _Ef (to~o)te" =, (5.30)



5.1. SIMILARITY VARIABLE

2\ 2 2 2
(1) = () Pl 3t 322 + (2 4 D (b ) (e 3>, (5.31)
[0 o
Applying the substitution p = TIT we get
Dl ) = 5y =y L2 €= 7 o)

1 tzf% 2 o 1 tgg*% 2 o
= F(l—Oé)/CO (t —zap)™f'(p)dp == 2{‘(1_05)/60 (tz=a —p)~*f'(p)dp

Furthermore, we have

(t— cox%)_a = x_Q(tx_% —co) @

After having inserted these results in equation (5.2)) with s given by (/5.18]), we obtain
(5.24]). To show that ([5.25]) holds, it is enough to notice that, since the function u vanishes

on the free boundary, we have

0=u(s(t),t) = u(et?,t) = flco),

where we used (5.19). Now, we will prove the regularity results. By ([5.30) we get

s(t) 92 rs(t) 2 2 ©
0 >/0 g (2, 1) | = a/o |f’(m—a)|m—a—1dx:/ f(€)|de. (5.32)

€o

From ([5.31) we obtain in the similar way that

T E) T (2)2f”(t Bt E) 2 (2 4 1) f () (ka2
00 U (T, T = — T o)(te ) T o)(tx «)x X
s(t)/k s(t)/k| \ X o
2
kaco | 9 a _a 2 a o
= [T Er@et i+ S+ s
co (6] (6%
ASER

k%t:g 00
> =g t/co ()| de — ( + )kedt™s / |f/(€)|de for every t > 0

and as a consequence we obtain

[ 1@ de < . (5.3

€0

The estimates and lead to f' € AC([co, kaco]). Making use of the absolute
continuity of f’ in identity we deduce that f € C?(cy, kz%c()). Hence, we obtained
postulated regularity results. Now, we shall rewrite the condition in terms of the
function f. We will show that it leads to (5.26)). Let us fix a € (s(t)/k, s(t)). Applying
the substitution p = a~aT we get that

2

A= d [/St_l(a)(t —7)* gy (a, T)dT] = —zi Ucom (t — T)a_lf/(Ta_a)TCL a” dT}

2 5 .d
= ——Q« _—
o dt

/ta_a(t_aip)a_lpf,<p)dp] _ _ia:;t [/C:a—a(ta—i —p)*pf(p )dp]

co
The integration by parts formula leads to
% (tg=% —p)° ta~a —co)®
A= -2 [ [0 ) 4y ap - 1
(&)

Cof/(Co)] )
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By the continuity of second derivatives of f in (co, kacy) we have

tim, 7P () 1) = 0.
p ta= & a

Therefore, we obtain

2 2 o~ % -2 a— ’ " -2 a— /
A=—ge [/c (a2 =) (/) + pf (0) dp + (172 = o) e <CO>}
Since f' € AC([co, kaco)) we get
taiﬁ 2
li ta~a —p)* 1 f'(p)dp = 0.
J [ (tame = p)* f (p)dp

Applying these results together with (5.18]) in (5.5)) we obtain that

| 1 21-2 0 4. ta=h -2 a—1, g1 -2 a—1 . ¢
Setil= o SaTh e Mim | [ (10 E = p) pf (p)dp + (taE — )™ eof (co) |
€0
(5.34)

2 NOEE as(t)

We note that
ta” @
[t s =) s ()dp

co

2
ta” o

(ta=% = p)f ()dp+ta? [ (ta~% = p) ' (p)dp.

€0

SN

/tzz
C€o

Moreover,
ta % tzz*%
lim / ta= e — ) (p)dol < lim (ta— > — ¢ a/ " dp — 0.
Jmlf ( p)* f"(p)dp _Ms(t)( 0) ; | (p)| dp

Making use of this convergence in ([5.34]), we obtain

a\? 2 )
(3) cimi@ =a tm,

/:_a (ta~= = p)° " f(p)dp + (ta” = — 60)“_1]0/(00)] |
ie.

(5) @t =jm | [ 0= o),

b\o db co
where we applied the equality

b a—1 pn d b a—1 p/ a—1 p/
[o-p =5 | [0-pren] - 0- w6

Thus, we arrive at (5.26)). To prove (5.27)), we notice that from the equation ([5.24]) we get
2 2
(2) €-arere

[fc-mrmrwmm - |(2) + 2 -corere s 5t

a)

_ (£ —co)”
I'l—a«)

The function f’ is absolutely continuous on a neighborhood of ¢y thus, taking the limit at
& = ¢y we obtain ([5.27)).
It remains to show that (5.26]) implies f'(cy) = 0. We note that

d b a—1 p/ o 11—« p7
7 Co(b—p) f'(p)dp =T(a)d,, “f'(b).
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5.2. EXISTENCE OF A SELF-SIMILAR SOLUTION

We fix € > 0. Then, from (5.26)), there exists xy > ¢¢ such that for every = € (¢, x¢)
a\? a \?
I < 81—(1 ! < () )
<200> eSO, fle) = (g, ) +e
We note that, since f’ is absolutely continuous by Proposition we have [ jo_o‘ﬁclo_a =1,
Applying [ Clo_a to the above inequalities and making use of Example |2.2| we obtain that for
every x € (co, zo)
o 2 (ZL’ _ Co)lfoz , a 2 (ZE _ Co)lfa
— ) e K < — —_—
[(2%) 5} To—a) =/ @s= (2c0> T Te—a
The last pair of inequalities is equivalent with
. f'(x) ( o )2 1
lim ————— = — | ———
z=eo (x — o)l 2c0/) T(2—a)
and in particular f'(cy) = 0. This way we finished the proof of Proposition . H
We note that, the converse statement also holds. Reverting the calculations, we obtain

the following result.

Corollary 5.4. Assume that k > 1, ¢y > 0 and function f is such that f € L(cy,0),
F e AC(lco, kaco)), f € C2(co,kacy) and for € € (co, kacy) the equality holds.
Then u(z,t) = f(tz~a) satisfies

Dy pyu(@,t) = e (2, 1) — m(t — s x)™ for s(t)/k <z <s(t), 0<t,

where s(t) is defined in with ¢ given by . Furthermore, for everyt > 0
there holds uy(-,t) € Whi(s(t)/k,s(t)) and for every x > 0 there holds w(x,) €
AC([s7Y(x), s~ (kx)]). If in addition f satisfies (5.25)), then u(s(t),t) = 0. Moreover, if f
satisfies then u fulfills . As a consequence of and , and
hold and then u,(s(t),t) = 0.

5.2. Existence of a self-similar solution

Now, we shall find the solution to the problem ([5.24)-(5.26]). As it was proven in the
previous section, if the solution exists, then it also satisfies ((5.28)) so, it is convenient to

consider the space

Xr={f € C'([co, R]) = f(co) = f'(co) =0},
for R € (¢p,00). Firstly, we transform the equation into a weaker form and we
obtain the existence of the solution to the transformed equation in the space Xg.
Let us apply the integral I., to both sides of . Then, by Proposition we have

[fofa '(€) = (2)2/; 2" (1)dr + [(i)Q + i] /C: Tf'(T)dr — (gr(_QC_O);_)a. (5.36)

If we integrate by parts and take into account that f(cy) =0, f'(co) = 0, then we obtain
3 3
| rr@ar =ep) - [ ryar
co

co
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and

3 3 3
| 2@ =@ —2 [ (myr = ()~ 260 +2 [ f(r)ar

co

Inserting these calculations in we arrive at
2\? 2 3 2\2 9 2\ 2 o\«
Lof(6) = l(a) - a] /CO f(r)dr — [(a) - a] EF(E) + <a> 1) — (i@C_o)a)‘

We apply again I, to both sides and integrate by parts to get

oo =|(C) - 2| nro-p(2) 2] [rromar (2) ero- 5520

a a a a '3 —a)

The above equality has the following form
f(&) = Kf(&)+9(8), (5.37)

k56 = (3) enr@+ [2 1] ez e+ [s- 2 e [

2 co
o= (5) et

and

Proposition 5.5. Assume that R € (cy,00). Then there exists a unique f € Xg solution
to . Furthermore, the obtained solution belongs to C*(cy, R) and it satisfies
on (co, R).

Proof. At first, we note that g € Xg and the operator K is linear and bounded on Xg.
Furthermore, the range of K is contained in C?([cy, R]), hence, K is compact operator in
X and by Fredholm alternative the equation (5.37)) has a unique solution provided, the

homogeneous equation has only one solution. From the estimate
e

a\? (&= o)t a, g
KFOI< |(5) a* fgray + (- 3a’€ -+ =)' | [ Iflar
and Gronwall lemma we deduce that the only solution in Xz of f — Kf =01is f = 0.
Hence, there exists exactly one f € X which satisfies ((5.37)). Since the right hand side

of (5.37)) belongs to C*((cy, R)), then so does f. Hence, we may invert the calculations
leading to identity (5.37)) and we obtain that f satisfies (5.24)) on (¢o, R). O]

Proposition 5.6. For every 0 < ¢y < R < oo there exists exactly one f belonging to

C'([co, R)) N C*(cy, R) which satisfies the system - (5.28).

Proof. It remains to show that the solution obtained in Proposition satisfies ([5.26))
and (5.27). We note that (5.27)) is a simple consequence of (5.24) and continuity of f’. Let
us show (5.26]). We fix € > 0. Then, by (5.27)) there exists {, > ¢y such that for every

co < § <&
—2 —2

(5) misa s €= (5) mroa o
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Hence, for every ¢y < £ < &
2

((5) it -e) e = o= ((5) risg +o) -

Applying F(11—a) I to both these inequalities and using Example H we obtain that for

every cg < £ < &
2 —2

(3‘)2P(f°_a) —e< ml_a)fg; "(6) < (g)ZF(fo_a) te.

2
12 17(€) - (‘;‘) 2 as £ = co.

If we recall that f’(co) = 0, then from (5.35)) we have

Hence,

d a-1 T o e a\? 2
lim 2 [ (€ =9 ) = Jim T(@)15,7€) = T(a) (5)
and we arrive at (| - O

From Corollary [5.4] and Proposition [5.6] we deduce the following result.
Corollary 5.7. Let f be the solution to - given by Proposition . Then, for
every k € (1,00) function u(x,t) := f(ta"%) satisfies
1
(t—sHa))™™ for s(t)/k <z <s(t), t>0,

I(l-a)

u(s(t),t) =0 for every t >0,

) 1 r d
0=~y 7 |
(

uz(s(t),t) =0 for every t >0,

Dy pyu(@, t) = uge(2,t) —

¢
/ 1 (t — 1) tug(a, 7)dr|  for every t >0,
- (a)

where s(t) is defined by with ¢ given by (5.19). Furthermore, for everyt > 0 there
hold u,(-,t) € Wh(s(t)/k, s(t)) and uy(z,-) € AC’([ Yxz), s (kz)]) for every x > 0.

Now, we shall examine the positivity of u given in the above corollary. In the next
section we shall show that f(£) > 0 for each £ > ¢y and we determine the limit of f at

infinity.

5.3. Positivity of solution

Proposition 5.8. The function [ given in Proposition is positive on (co,00). Fur-

thermore, N
- [ ;)u"c:(y))dy, (5.38)
where the constants ¢y and ¢, are related by the formula and
(I @) = gpmay [ [ = p 2 uE) " hio)dpdn (5.39)
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1

Gle) = I'l—a)

/ (1-— cou%)_adp. (5.40)

The series converges uniformly on [0, ¢1]. Moreover, if F(u) = f(/f%), then F € C([0, c1])
and F" € L'(0,¢,).

Proof. In order to prove the positivity of f on (¢, 00) we have to transform the equa-
tion ((5.24). We introduce p := £~ 2 and
_2
F(p) = f(u==) = f(&). (5.41)

We note that if & € (¢, 00), then p € (0,¢1) and f(co) = f'(co) = 0 implies F(¢y) =
F'(¢1) = 0. We will rewrite the identity (5.24)) in terms of function F. We note that

2 _2_ _z2
F'(p) = ——p== "' f(p=) (5.42)
and
2.2 _2_ _2 200 _2.4 _2_ _2
F'(p) = ~(= 4+ Dpa 2 f (o) + (&) o pma " (n7e),
aa a
Hence,
e = | (2) + 2ero+ (2) ere
a a a '
Furthermore,
L2 2. _, 2 [, 2 2\, 2 _2
J A R A A T e e e A ()
Iz @ Jpu
Applying the substitution p_% = w we get
2
C1 2 _2\_q oo _2 —« € —x
[ s —p P odp=— [ (% —w) e fwydw = = [ (6= w) = (w)dw.
I co €0
Inserting the result of these calculations in (5.24]) we find out that function F' satisfies
1 ‘@ 2 2 1 2
Fl)= - [ ) F () dp+ i — )
(1) o’ J, (W —p ) "F'(p) P o) (u o)™,
which is equivalent with
1 €1 2 2 1 2
F'() — — / 1—p aud) F(p)dp + ——(1 — copa ), 5.43
(1) Ti—a) #( pape) (p)p+r<1_a)( Coft®) (5.43)

Integrating this equality from x to ¢; and recalling that F'(c;) = 0 we get

F(z) = F(ll_a)/xl ACl(l—p‘iuz)_aF’(p)dpdu—F(ll_a)/:(1—00/~L3)‘adu. (5.44)

We are going to obtain an explicit formula for F' and we will show that F' is positive in
[0, ¢1]. Since f’ is continuous in [cy, 00) then (5.42) implies that F' € C(0, ¢4].
Then, identity (5.44)) may be written as

F'(z) = (LF')(z) — G(z) (5.45)

where the operator L and function G are defined by ((5.39)) and (5.40]), respectively. We
apply L to both sides of ((5.45)) and we deduce that

F'(z) = (L*F)(z) — (G(z) + LG(x)).
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5.3. POSITIVITY OF SOLUTION

Iterating this procedure we obtain that for every n € N and every = € (0, ¢;) there holds
Fl(z) = (L"F')(z) = Y _(LFG)(x). (5.46)
k=0
Let us show that for every fixed zy € (0,¢1)
li L"F' =0. 5.47
M, max [(L"F7)(z)] (5.47)

At first we note that for any z € [0, ¢1] and h € C([xo, ¢1]) there holds
1" Pl ooy < Wlleaoeay HE" Ul gy ey - (5.48)

Let us focus on the estimate of L™1. By the Fubini theorem we have

1 c1 c1 2 9 1 C1 P 2 2
— 1—*aa*add:7//1—*aa*add.
F<1_a)/x /u( p~epe) “dpdp Ti—a) /s (L —p7aps) " dudp

We note that

[ a=p i) dn < SBE - alp, (5.49)
where we applied the substitution w := p_%/ﬁ. Hence, we obtain
0< Ll(z) < WCI(LEl)(Cl) for z€0,¢). (5.50)
We shall show by induction that 2
0< L"1(z) < mclr (I71)(c1) for z€[0,¢) (5.51)

for each n € N. Indeed, suppose that (5.51)) holds for n = k£ — 1 and then we have
1 ‘1 [rp 2 2
L*1(z) = LL* 1 (z) = 7/ / 1—p= 3 ud) e du(L11) (p)d
(x) (2) Ti—a) (L= pme ) du )(p)dp

S rrma [Ra] L[

k—1
1« (e _
o GG - e

where in the last inequality we used ([5.49)). Thus, we have
'+ 39) t e k—1 P +3) *

11 dp = 2 I*1
1"(1 - 3)01] /x ( P )(Cl) p (1 — %)Cl T (Cl)
and (5.51)) is proven. We note that

L*1(z) <

1 c cp—x)"
(Igl)<cl) = F(n) /ac (Cl - T)nildT = 7( ! TL' ) (552)
hence, by (5.51)) we get
r1+2) ,]"1
L"1 < 222 = .
0< (x) < T 3)01] - (5.53)

Applying the estimate (5.53]) in (5.48) we obtain that
max |[(L"F')(z)] < max |F'(z)| max |L"1(z)]
xr€E|Tro,C1

z€[wo,c1] z€[zo,c1]
ra1+4%) ,\"1

< F — 2 —
—mér[ﬁﬁ]l (@) (r(l—g)cl> n!

125



CHAPTER 5. A SPECIAL SOLUTION TO TIME-FRACTIONAL STEFAN PROBLEM

and due to the presence of factorial function in the denominator the convergence (|5.47))
holds. We will show that the series 3°3°,(L*G)(z) is uniformly convergent on [0, ¢].
Indeed, applying the substitution w := co,u% in the definition of G we obtain that
1 (67 1 V-
G(I) = maCl /Cox?!(].—'lU) w 2 1dw.
Thus,

I1+9)
max_|G(x)] < r_%)cl.

z€[0,c1]
Applying estimates ((5.48) and (5.53|) for zp = 0 we arrive at

max |L"G() I(1+%) <F0.+§)2>"1

< c C
€0,c1] ’—Pu—g)lru—g)l

— = a,.
n!

We note that
Ap1 o F(l + %) 2 1

0,  T1-2)Tn+1

Hence, by comparison criterion and d’Alembert criterion for convergence of the series we

— 0 as n — 0.

obtain that 33 (L*G)(x) is uniformly convergent on [0, ¢;]. Finally, we may pass to the
limit in (5.46]) to obtain
F'(z) = =Y (L"G)(z) for every x € [0, c1], (5.54)

n=0

where the right hand side converges uniformly. As a consequence, F' € C'([0, ¢;]) and by
(5.43) we get F" € L'(0,¢).
We note that L"G(z) > 0 for [0, ¢;) thus,

F'<0on[0,¢). (5.55)

Applying the fundamental theorem of calculus, we may write
F(z)=— /:1 F'(y)dy = /:1 i(L”G)(y)dy for every x € [0, ¢1]. (5.56)
Thus, we have obtained that F'is positivenz(r]l [0,c1). We recall that the functions f and F'
are related by the equality therefore, we proved the claim. O

From Corollary and Proposition [5.8/ we arrive at the following conclusion.
Corollary 5.9. Let ¢; > 0 and s(t) = cit>. Let us define
uw,t) = [ L S (LG)dy for @€ [0,5(0)], >0,
at 2 n=0

where L and G are given by and , respectively. Then, the above series
converges uniformly and for every n € N there holds L"G(y) > 0 for every y € [0,¢).

Moreover, u(z,t) satisfies

1T, ) = Uge (2, 1) — I 1_ o (t— s @) for 0<z<s(t),
u(s(t),t) =0,
0= i AL ot
F(Oz) a,/'s(t) dt s=1(a) z\U, s



5.3. POSITIVITY OF SOLUTION

uz(s(t),t) =0,
for every t > 0. Finally, from equality u(z,t) = F(xt=2) we deduce that for everyt > 0
u(-,t) € W20, s(t)) and for every x > 0 there holds uy(z,-) € C([s~!(z), 00)).
Corollary 5.10. Functions u and s defined in Corollary [5.9 satisfy u, < 0, u; > 0 in
{(z,t) e Rx (0,00) : 0 <z <s(t)},
V2 >0 ug(z,-) € L®(sH(x),00) N ACe([s (), 00)) (5.57)

and

YVt >0 u(-,t) € L'0,s(t)) and D™ )u( t) € L'(0,s(t)). (5.58)
In particular, the pair (u, s) satisfies the assumptions (A1) - (A3).

Proof. At first, we recall that

wn(a,t) =t EF (), wlet) = —Sat 5 F (),
where 1 = 2t~2. Hence, by we infer u, < 0, u; > 0. Since, F’ € C([0,¢;]) and
for fixed * > 0 p is continuous and bounded function of ¢ on [s7!(x),c0), we obtain

that ug(x,) € L®(s7(z),00) N C([s7*(x),0)). Let us show that u,(z,-) is absolutely

continuous. We may calculate
& @ @ a @
Up iz, t) = —§t_5_1F’(xt_5) — §t_a:vF”(xt_f).
Hence, for every t* > 0

t* t*
/ o e )] dt = /

Applying the substitution ;1 = xt~2 we have
t* c1 c1 9 5
/Sl(x) (e (2, 8)] dt < /zt*_% o™ | F ()| dp + /ﬂ*_% wa Tt Ta |F ()] dp < oo,

because from Proposition we have F' € C([0,¢1]), F” € L*(0,¢;1). To prove (5.58)), we
note that for every ¢ > 0

s(t) clt2
Hut('at>HL1(0,s(t)) :/0 x t de = ——/ 1F/ )dx

= —Eﬁ’l/o pF'(p)dp < oo,

because F' € C([0,c;]). Using this results we obtain further,

s(t)
/ ‘D yu(z, t)‘dx— T —a) / / (t — 1) “wy(x, 7)drdz
1

) = /oS(T) el e = _F(l—a)Q/o pF)dp [ (t=7) 75 s

dt.

—%t’%’lF’(:ct’%) _ %t*a:cF”(:ct*%)

r1+9) /Cl )
—— = F'(p)dp < oo.
=2 ? (p)dp < o0
Corollary together with (5.57) and (5.58) implies that the pair (u,s) satisfies the
assumptions (A1) - (A3). O
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5.4. Boundary condition

By Corollary [5.9] for each ¢; > 0 we have obtained a self-similar solution to time-fractional
Stefan problem (u, s)., such that

c1 "
u(0,.8) = [ S (L"G(y)dy. (5.59)
n=0
Now, we address to Dirichlet boundary condition (5.4). We investigate whether for given
~ > 0 it is possible to find ¢; > 0 such that (u, s)., satisfy (5.2)-(5.5)).

For this purpose we write explicitly the dependence of solution on ¢;. Recall, that from

(5.39), (5.40) and the Fubini theorem we have
1 1 [P 2 2
Lok :7//1— -2 3 duh(p)dp, 5.60
(Lesh)(y) Ti—a)l, y( pap=)"“duh(p)dp (5.60)

1

G, (y) = Ti—a)

C1 _2

/ (1— e ud)dp. (5.61)
)

The next proposition provides the representation ({5.7)) of the self-similar solution.

Proposition 5.11. If ¢, is positive and s(t) = citz, then for t > 0 and x € [0, s(t)] we
have

[y Gty = [ Hpat$)Ge, (p)ip, (5:62)

2
n=0
where the function H is defined by —. Furthermore, H — 1 is positive on the set
W ={(p,z): 0<x<p} and H is continuous on W.

Proof. We will find another recursive formula for L G,. For 0 <y < p < oo we denote
1 4 2 2

My (p, ::7/ 1—p2ud)dp. 5.63

Then, we may write

(Lah)(y) = [ Mi(p,y)h(p)dp.

)
Further, we obtain

(LG ) = [

Y

M, (pv y)(Lc1Gc1)(p)dp = /

Y

/ Mi(p,y) M (r,p)dpG, (r)dr.
y
Thus, if we denote

Ms(r,y) = /y M (p, y) My (r, p)dp (5.64)

then,
(L2.G.)(y) = / My(p, )G, (p)dp.

By induction we obtain

C1
(LGe)w) = [ Mu(p.y)Ganlp)dp for n>1 (5.65)
Yy
where we set
P
M,(p,y) ::/ M (a,y)M,_1(p,a)da for n > 2. (5.66)
Yy
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Now, we shall obtain the estimate for M,,. By (5.49) we get

Mi(p,y) < wﬂ (5.67)

Then,

Ma(p,y) < lwrp/:ada <

We prove by induction that

ra+2) 1", .

F(i)pl (I; ') (p), n=>2 (5.68)
2

Indeed, if

then by (5.67) we obtain

Mii1(p,y) <

rrir] [ R et e

ra-4)") Jy ra-3)

< [Mp} a /y () (p)da = [Wp] . (I51)(p)

2

hence, we arrive at (5.68)). Applying (5.52)) in (5.68) we get the following estimate

ra+g) 1"
M < 2 f > 2. )
n(D,y) < Tl g)pl (1) or n > (5.69)
Let us define -
N(p,y):=> M,(p,y), 0<y <p<oo. (5.70)
n=1

If R > 0, then by (5.69) the series converges uniformly on the set
Wr={(py): 0<y<p<R} (5.71)

In particular, N is continuous, non-negative and bounded on Wg for each R positive.
If we sum over n both sides of (5.65)), then we get

> 1,Guly) = [ NGl 5.72)

Therefore, we have

c1 S c1 c1 c1
/_g Z(Lﬁchl(y))dy:/_g Gcl(y)dy+/ _g/ N(p,y)Ge, (p)dpdy.
xt 2 o xt 2 xzt 2 Jy
If we denote
P
H(p,z) =1 +/ N(p,y)dy for 0<z <p, (5.73)
then after applying Fubini theorem we obtain ([5.62)). m

Now, we shall investigate the dependence of the self-similar solution obtained in
Corollary from the parameter ¢;. For this purpose we apply the representation given
by Proposition and we denote

Fo(@) = [ H(p.2)Ge, (p)ap. (5.74)
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Having in mind that the function H is continuous and bounded, we will examine the

continuity of the mapping

o1 B (2) = / " H(p, )G, (p)dp. (5.75)

The precise formulation is stated below.

Proposition 5.12. Assume that ¢, is positive. Then for every x € [0, c;)

lim F () = F., (x). (5.76)
Cc1—C1
Moreover, we have
Clllr\no F.,(0)=0 (5.77)
and
li}n F.,.(0) = oc. (5.78)
Furthermore, if v > 0, then there exists positive ¢ such that
c1
F(0) = [ Hp,0)G,(p)dp = 7. (5.79)

Proof. Let us fix x € [0,¢;) and assume that ¢ > ¢;. Then by formula (5.74]) we get

Fa(x) - Fc1 (I’) = /Cl H(pa x)GE1<p)dp + /:1 H(p7 x)[Ga(p) - Gc1 (p)]dp

C1

We note that H is bounded on {(p,z): 0<x <p <7} and
ra+9)
Gz < —2F
G )] < 2y
hence, the first integral converges to zero, if ¢; \, ¢;. Next, we recall that after substitution

_2
W= “u% we have

a ].
Gorlp) = 71 [

and hence

o 1 o .
= = |(@& - 1 —w)wi 14 / 1 w)wi-ld
2T(1 — o) |:(Cl c1) /Clgpg( w) “w? w + Cp E;%p% ( w)” “w w

The first integral is uniformly bounded by B(1 — «, §) hence, the first term converges to

zero, if ¢, \, ¢;. The second integral also converges to zero because

_2 o

¢ “pe o o
/_13 , (1—w) w2 dw < sup / (1 —w) w2 tdw — 0,
atpe weloawi<(@)& 17"

if €1 \( c1. The case ¢; < ¢; may be shown similarly. Therefore, we obtained ((5.76)).
To get (5.77)) we note that

Fa(0) = [ Hp,0)Go,(p)dp < 1Hllz=or.,

I(1+%)
7 a Gl — O,
r—9)

if C1 \(O
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Recalling that N is non-negative, we may write

F. (0 >/ o )clp—2F / /13“ 2 ~w? " dwdp
o ‘1 _2 2
—a _ 1 — ans\l-a
_2F1—acl/ /22 dwdp = 2F(2—a)cl/o( ¢ tpr)
2
(5) & a, al(1+9%5),
=2 1 po o H = Ta)2
T2 —a) ( a72) 2F(2_§)cl—>ooascl—>oo

and we proved ([5.78)).

Finally, it remains to prove that for each v € (0,00) there exists ¢; € (0, 00) such that

FC1 (O) =7-
From ([5.76]) we deduce the continuity of (0,00) 3 ¢; — F,,(0). Applying the Darboux
property together with (5.77)), (5.78) we deduce that this map is onto (0, co). ]

To prove Theorem [5.1] it remains to collect the obtained results.

Proof of Theorem[5.1 The result is a direct consequence of Corollary [5.9] Corollary [5.10]
Proposition and Proposition [5.12] O

Proof of Remark (5.1 We note that Remark is a simple consequence of Theorem
Indeed, from the formula (5.7 we obtain that

wl01) = 7% [ s+ [ N0 Ga )| =~ 2ot
Since N is continuous and bounded on Wy for every R > 0 and G, is continuous

with respect to ¢;, we obtain that ¢ is continuous as well. Furthermore, g(0) = 0 and

lim,, o g(c1) = 00. Thus, Remark follows from the Darboux property. O

5.5. Convergence to a solution to the classical Stefan problem

We finish this chapter with a result concerning the convergence of self-similar solutions
to the fractional Stefan problem to a solution to the classical Stefan problem. To formulate
the result we introduce a new notation. We fix ¢; > 0 and for a € (0, 1) we denote by s,

and u, the solution to fractional Stefan problem (5.2) - (5.5)) with v = [5* H(p, 0)G,, (p)dp
given by (5.6) and (5.7]). Then we set
uo(x,t) for t>0, z€[0,ct2
TRET I 0.cat?) (5.80)
0 for t>1, z€[eitz,eqtz].
Theorem 5.13. Let us fir 0 < t, < t* < oco. Ifa /1, then u, converges uniformly on
the set {(z,t) : t € [t,,t*], = € [0,c1t2]} to u1, where uy is a solution to the classical

Stefan problem corresponding to the free boundary s, = clt%, i.e. s1 and uy satisfy

(2, t) — up gz, t) =0 for t>0, z€(0,s(t)), (5.81)
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ui(s1(t),t) =0 for t >0, (5.82)
uy (0,1) = 2ae” /a e dw for t>0, where a = %, (5.83)
0

d

%sl(t) = —uy.(s1(t),t) for t>0 (5.84)
and uy is given by the formula
u (z,t) = 2ae” /a e dw. (5.85)
Wi

Furthermore, converges in the sense of distributions to .

Proof. Let us fix ¢; > 0. We recall the representation of solutions to the system (5.2)) -
(5.5) with v = [5* H(p,0)G,,(p)dp given in Corollary
Sa(t) = cit?,

c1 o0

ua(:zr,t):/ S G (y))dy for @€ [0, 54(t)], t>0,

t 200
where we added a subscript a to emphasize that the solution depends on a. We rewrite
also the formulas (5.61))-(5.66)) with a new subscript . Then we have

1 P _2 2.,
Mia(py) == m_a)/y (L—p apa)"du,

»
M, o(p,v) ::/ M o(a,y)M,—1 4(p,a)da  for n>2
y

for 0 <y <pand
1

Gealy) = Ti—a)

c1 _2 4 a
/y(l—cl‘*ua) du,

(L7 oGera)y) = /y 1 Myo(p,y)Geya(p)dp  for n>1and 0<y<c.

We would like to pass to the limit with « in the formula for u,. Hence, at first we shall

calculate the limit as @ ,* 1 in the formulas for M, ., G¢, o and L} G . After a

c1,x

. . 2 2
substitution ¢ := p~apua we get

L(1+5%) 5D )/Op

Qo
Qo

Y

My o(p,y) =p — (1—q) ¢ 'dg.

INQE %) [l -«
We note that

lim 2P [
a/1T(1—a) Jo
because for 0 < y < p we have

Qo
Qo

Y o
(1—q) g2 'dg=0 for 0<y<p,

_2 2 2

%p /p cye 1 — )@ g71d < %p 1 — f% % 7o¢/p “y

T —a) (1—q)%g> q_F(l—a)( Py |
E— (1—p aya)™® =0 — 1
_F(l—a) p ey as « .
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Then we denote

1
. gp for  0<y<p,
My i(p,y) == lim M, .(p,y) =} > 5.86
11(p, v) ol 1a(D, ) {0 for 0<y=p. ( )
From the definition of G, , we infer that the same calculations as for M, , lead to
i ic for 0<y<ec,
Gep1(p,y) :==1lim G, o(p,y) = 2 ! - ! (5.87)
o/1 0 for  y=c¢
and
0<Gualy) <c, for yel0,a], ac(0,1]. (5.88)
From (5.67) and (5.69)) we deduce that
2n—1
0< M,o(p,y) < (P ) for a€(0,1), 0<y<p, n>1 (5.89)
n—1)!

The above estimates allow us to apply the Lebesgue’s Dominated Convergence Theorem
(LDCT) and we get

P
M, 1(p,y) = 1i;nl M, o(p,y) = / Mii(a,y)My—11(p,a)da for 0<y<p, n>2.
« y

(5.90)
Furthermore, the estimate (5.89) gives
2n—1
0< M, (p,y) < (p 5 for 0<y<p, n>1. (5.91)
n—1)!
Applying again (5.88)), (5.89 together with LDCT we obtain
(LZI 1Gc1,1)(3/) - 111’[1([;?1 aYcl, a / Mnl p: cl 1<p)dp fOI‘ 0 S Yy S C1, N Z 1.
(5.92)
Moreover, making use of (5.88)), (5.89)) and (5.91)) we arrive at the following estimate
2n+1
0 < (L7 oGera)(y) < for 0<y<e, n>0, ae(0,1]. (5.93)
Taking advantage of (|5 92) and ([5.93]) we get that
hm Z c1 o 01 Ot y) Z(Lgl 1G01,1)(y) fOl" y S [07 cl]' (594)
n=0

Recalling that u, was deﬁned in we introduce the following definition
uy(z,t) := li/rq Ua(z,t), t>0, z€ [0,015]. (5.95)

We shall characterize the above limit. If 2 € [0, ¢;¢2), then we note that

uy(z,t) ;== lim Z t.0Gera)y)dy = /xt” Z e 1Ge1) (y)dy, (5.96)

a1 =% ? =
where we applied (|5 - 4)) together with LDCT. If x = cltz then for ¢t > 1 we have
T (crt2, 1) = 0 s0, ui(c1t2, ) — 0. Finally, if # = ¢,¢2 and ¢ € (0,1), then

Ua(crt2,t) = il}nl ua(clt2 = il}nl /Clt Lo HZ:: t.0Gera)y)dy =0,
where we again applied (5.93] - Therefore, we deduce that
(x,t) / . Lg 1Ge, 1) (y)dy, fort >0, xe [0,015]. (5.97)
at 2 = O
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Our next aim is to prove a uniform convergence of 4, to u; on every compact subset of
{(z,t): 0 <t < o0, z€l0,cit2]}. To this end we fix 0 < t, < t* and we denote

Quu ={(x,t): t€t,t’], z€l0,ctz]}.
Then, from uq(cit?,t) = 0 we deduce that @, € C (@4, ++). We shall show that u, converges
uniformly to u; on @y, 4+. Let us fix ¢ > 0. Without loss of generality, we may assume
that £ < 2c2ei (1 — té) in case of t, < 1 and & < 2% (1 — t*_%) in case of t* > 1. Then,
from (5.93), and LDCT we deduce that there exists ag € (0, 1) such that

| 1Ge) ) = (L nGena)w) dy < 5 forall a € (ap,1).  (5.98)
0 ln=0 n=0
To estimate (%) := |Uq(z,t) — uy(z,t)| for (z,t) € Qr, ++, we have to consider three cases.

1. Case z € [0,c1t2] and £ < 1. In this case we have t, < 1 and we may write

cloz 6104 dy / Z 011 C11 )dy‘

(%) = |ua(z,t) —uy(z,t)] =

xtg oo oo

g Z 1, Geia) dy+/ cla Gera)y) — Z(LZ 1G6171)(y)‘dy
n=0
_1 _a €
< cleclx(t 5 ¢t 2) + 2
where we apphed - and ( . We define a; € (0,1) by the equality

Aei(1 — t* T ) . Then, for a € (max{ao,al} 1) we have

(*) < czec?t%(t_% —t73) + 5 =21 —t =)+ %
1— O‘l e

< Eef(1 -7 )+2 <l —t. 2 )+ =¢
2. Case = € [11%,¢1t2] and t > 1. In this case we have t* > 1 and (x) = uy(z,t). We
define ay € (0,1) by the equality 2% (1 — ¢*~
/ff Z Cl 1 c1, 1 )dy < Clec%(cl - xt_%) < C%GC%(l - taT_l) <

% n=0
< 21—t T )<8%u—ﬁ2):;

where we applied (5.93)).
3. Case x € [0,cit2] and t > 1. In this case we have t* > 1 and

cla 0104 dy / Z 011 011 )dy‘

[e.9]

cla Cla y) Z(Lcllel)( )'dy

= n=0

22_1) = 5. Then for a € (ay, 1) we have

(%) = Jua(z,t) —uy(x,t)] =

ot g OO
/ cla Cla dy+/

< cleclx(ff — tié) + 5,

l\‘)\»—l

where we applied ([5.93) and (5.98). Then, for a € (max{ag, as}, 1) we have
2 2,a, —1 € 2 2 a-1 €
(x) < cefitz (72 —t 2)+§:clel(1—t 2 )+§

ag—1
< Eei(l—t"T )—|—2<cf01(1—t* E )—l—%:a
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We note that in the calculations above the constant a; = a4 (t.) appears only in the case
when ¢, < 1 and similarly ay = as(t*) appears only in the case when t* > 1. Hence in
general case if t, > 1 we set a; = 0 and if t* < 1 we set ap = 0. Then we may write that
for any 0 < ¢, < t* and any ¢ small enough, if a € (max{ag, a1, s}, 1) then

|Ua(z,t) —ui(z,t)] <e for (x,t) € Qs

and as a consequence, u; is continuous on @y, 4+.

2

Let us calculate the formula for u;. At first, we will show by induction that
E i (P> =y for 0<y<p, neN. (5.99)

M (p,y) = Pn—1)

From ([5.86) we see that the formula in (5.99) is fulfilled for n = 1. Let us fix a natural
number k£ > 2. We assume that for any [ € N such that 1 <[ < k we have

2p 2 21I—1
M _ ey
l,l(p7y) 4[([_1)|(p Yy )
Then
_ Ll _ 2p L 2\k—1
Mii11(py) = 2/y aMy.1(p,a)da = 24’“(1{:—1)'/?4 a(p® — a*)* 'da.
Applying the substitution a? = w we have

2

P P - 2p
My (p,y) = m /yz (p* — w)* tdw = 4’f+71k!<p2 -y

and we arrive at the formula ((5.99)) for n = k£ + 1. Thus, by the principle of mathematical

induction ([5.99) is proven.
Let us calculate L7 G, 1. Making use of (5.92) and (5.99) we get

8]

c1 2 Cc1
L' G, :/ M, 1(p, y)G. d:—i/ 2 _ 2L,
e Ger1(y) ; 1P, y)Gera(p)dp = 5 D), p(p” —y7)" dp

Applying the substitution p? = w we have

C1 1 of N1 1 2 9 ol c1)? v\ 2 "
LG, :77/ —) " = ———— (=) = = ()—() .
c1 lul(y) 2 4n(n . 1)' y2 (w y ) w 2 ] 4nn‘ (Cl y ) 2 TL' 2 2

Hence,
cp X c; [a 1 1 2 y 2\ "
wiet) = [7 S s Gata=5 [ 1 ((5) - (3)

Vi n=0
_ %1 PEE SR OO %4%)2 / By,
Vi Vi

We substitute y = 2w to get

Setting a = § we arrive at
a
uy(z,t) = 2ae“2/ e dw.
2Vt
Therefore, the function u; together with s; = clt% is a self-similar solution to the classical
Stefan problem ([5.81)) - (5.84)). For a construction to a self-similar solution to the classical

Stefan problem we refer to [I, Example 1, Chapter 1.3].
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CHAPTER 5. A SPECIAL SOLUTION TO TIME-FRACTIONAL STEFAN PROBLEM

To complete the proof of Theorem we will show the convergence of (5.2)) to ((5.81)) in

the sense of distributions. Let us rewrite (5.2)) in terms of @, and s,:
1 o
Dggl(z)ua(x,t) — Up 2z (T, 1) = —m(t —sM(x))™ for t>0, x€(0,e1t2).
(5.100)
We fix ¢ € C2°(Qy, ++) and we multiply (5.100)) by ¢. Then we integrate the equation over

Qs+ and we arrive at

sa(t*) rt*
/ / D%, Jus(x,t)o(x,t)dtde —/ / U o (T, 1) (2, t)dtdr =
0 sgl(:p) sa” (x) 0 Sae

1 sa(t*)  pt*
—— t— s, (x) “p(x, t)dtdz. 5.101
Foa ot s @) (e e (5.101)
We shall calculate the limit in all the above terms. Firstly, we note that u,(z,s;!(x)) =0

and by Theorem we have u,(z,) € AC[s;'(x),t*]. Hence, applying (2.15) and
Remark [2.6] we may write

(t*) pt*
/ / *1 ua(l‘7 t)‘P(x, t)dtdl‘
t*
r(1—a) / / / (t = 7) “Uau(z, T)dT(2, t)dtdT

Sa(t*) .
1—a / /sa ) di U )<t_7) Uo (2, 7)dT | (2, t)dtdx.

If we integrate by parts and next apply the Fubini theorem we get that

Sa t*
I(1-a) / / / (t = 7)" "ua(z, T)dT o1 (, t)dtdx

1 salth) gttt
T Tl-a) /0 / i) /T (t = 7)"“pu(x, t)dtua(z, T)dTdz. (5.102)

We note that . -
) [ = et

P(l — T
B 1 t* Cu (t* — 7)t~=
= foa L ) et el + e )
B 1 t* o [t (t* . T)l—a
= M/ (t—T) [_ gOtt(JT,S)det—f—gOt(l',T)m a—>/‘1 (,Dt(,I’,T),
because lim, ~ F( =0 and

t* -
/ (t —T)_a/ o (x, 8)dsdt| < sup |90tt(x,t)|/ (t — )-dr.
T T (7,t)€Qy, ¢+ T

We may write the expression (5.102)) in the following way
oo pt* 1 t* —a = —
—/0 /0 X[0,54(t*)] ($)X[sa1(x)7t*}(T)M/T (t = 7)" @iz, t)dtus (2, T)drdz,
where ¢ and 1u, denote the extensions of ¢ and u, by zero on [0,00) x [0,¢*]. We recall

that by (5.93) we have
o (x,t) < et for any t > 0 and z € [0, ¢yt3].
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Furthermore, for « close enough to one, we get

F(ll—a) /Tt* (t —7) "¢z, t)dt

Hence, we arrive at the following estimate

1 t* o= _
X[o,sa(t*)](fB)X[sal(x),m(T)F(l_&)/T (t = 7)“@u(x, t)dtua (x, 7)

< 2|pi(x, 7)| for any (z,t) € Qu, 4o

<2|pi(z,7)| cFet.

Recalling that Uo =2 Uy o1 @y, ¢~ we may apply LDCT to obtain that

a/1 = /Sa ‘o) D, ua(x t)p(x, t)dtde = /51 . /5*1 (x, T)uq (z, 7)drdz.
(5.103)
We apply the Fubini theorem and then integration by parts formula, together with the
fact that ua.(Sa(t) t) Ua(Sa(t),t) = 0 to get

Sa(t*)
/ / U o (T, 1) (2, t)dtdx —/ / U o (T, ) (2, t)dadt
t* sa(t sa(t)
= —/ / U (T, 1) 0o (, t)ddt :/ / Ue (2, 1) Pue (2, ) dxdt.
o Jo 0o Jo

Hence, applying again LDCT we obtain that

/1 = / U o (T, 1) (2, t)dtdx —/ / (,t) P (x, t)dtdx.  (5.104)

Finally, after 1ntegrat1ng by parts we obtain

_r(1{wa)/&ﬂﬁ{£ﬂ (t— 524 () (x, t)dide
= I‘(21—oz)/o /Sa " Yo g (x, t)dtdz.

We note that for every (z,t) € Qs, ¢+ there holds
(t—s (z)> — 1.

Hence, applying again LDCT we obtain that

sa(t*)
1—a/ /' (t = 7' (x) " (x, t)dtde
s1(t%) t* 1(t*)
/ (z,t)dtdx —/ o(x,t*) — p(x, 57 (x))dx =0,
a/‘l s 0

where the last equahty holds, because ¢ vanishes on a neighborhood of the boundary

@, ++- Therefore, taking into account the last equality together with ([5.103)) and ({5.104)

and regularity of u; we obtain that ((5.100]) converges to (5.81f) in the distributional sense,

which finishes the proof of the theorem.
O
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